Integrated edge deployable fault diagnostic algorithm for the Internet of Things (IoT): A methane sensing application
dc.contributor.author | Kumar, S. Vishnu | |
dc.contributor.author | Mary, G. Aloy Anuja | |
dc.contributor.author | Mahdal, Miroslav | |
dc.date.accessioned | 2024-02-28T07:29:55Z | |
dc.date.available | 2024-02-28T07:29:55Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Sensors. 2023, vol. 23, issue 14, art. no. 6266. | cs |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10084/152253 | |
dc.description.abstract | The Internet of Things (IoT) is seen as the most viable solution for real-time monitoring applications. But the faults occurring at the perception layer are prone to misleading the data driven system and consume higher bandwidth and power. Thus, the goal of this effort is to provide an edge deployable sensor-fault detection and identification algorithm to reduce the detection, identification, and repair time, save network bandwidth and decrease the computational stress over the Cloud. Towards this, an integrated algorithm is formulated to detect fault at source and to identify the root cause element(s), based on Random Forest (RF) and Fault Tree Analysis (FTA). The RF classifier is employed to detect the fault, while the FTA is utilized to identify the source. A Methane (CH4) sensing application is used as a case-study to test the proposed system in practice. We used data from a healthy CH4 sensing node, which was injected with different forms of faults, such as sensor module faults, processor module faults and communication module faults, to assess the proposed model’s performance. The proposed integrated algorithm provides better algorithm-complexity, execution time and accuracy when compared to FTA or standalone classifiers such as RF, Support Vector Machine (SVM) or K-nearest Neighbor (KNN). Metrics such as Accuracy, True Positive Rate (TPR), Matthews Correlation Coefficient (MCC), False Negative Rate (FNR), Precision and F1-score are used to rank the proposed methodology. From the field experiment, RF produced 97.27% accuracy and outperformed both SVM and KNN. Also, the suggested integrated methodology’s experimental findings demonstrated a 27.73% reduced execution time with correct fault-source and less computational resource, compared to traditional FTA-detection methodology. | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartofseries | Sensors | cs |
dc.relation.uri | https://doi.org/10.3390/s23146266 | cs |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | sensor faults | cs |
dc.subject | Sensing Edge Device | cs |
dc.subject | edge fault detection | cs |
dc.subject | Random Forest | cs |
dc.subject | Fault Tree Analysis | cs |
dc.subject | Methane Sensing | cs |
dc.title | Integrated edge deployable fault diagnostic algorithm for the Internet of Things (IoT): A methane sensing application | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3390/s23146266 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 23 | cs |
dc.description.issue | 14 | cs |
dc.description.firstpage | art. no. 6266 | cs |
dc.identifier.wos | 001036707500001 |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost Katedry automatizační techniky a řízení / Publications of Department of Control Systems and Instrumentation (352) [94]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry automatizační techniky a řízení (352) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.