Zobrazit minimální záznam

dc.contributor.authorFazio, Peppino
dc.contributor.authorMehić, Miralem
dc.contributor.authorVozňák, Miroslav
dc.date.accessioned2024-03-12T08:30:53Z
dc.date.available2024-03-12T08:30:53Z
dc.date.issued2023
dc.identifier.citationJournal of King Saud University - Computer and Information Sciences. 2023, vol. 35, issue 6, art. no. 101561.cs
dc.identifier.issn1319-1578
dc.identifier.issn2213-1248
dc.identifier.urihttp://hdl.handle.net/10084/152315
dc.description.abstractOver the last few decades, the classification and prediction of mobility trajectories in dynamic networks have become major research topics. Switching of mobility areas (hand-over) in modern cellular networks is frequent due to restricted coverage area and node speeds (urban, highway, etc.). Accurate management of hand-over events is highly desirable to improve the system’s quality of service. We have exploited the high accuracy of machine learning to classify user mobility from mobility traces which we encoded into images. The method delivers high performance in mobility classification/prediction (exceeding 95 ) and avoids the need to study and implement a dedicated neural network structure. The technique requires the conversion of mobility traces into image structures and the subsequent application of a convolutional neural network. We propose a novel approach to classifying mobility that involves data-to-image encoding and machine learning for image classification. Numerous simulations were performed to demonstrate the benefits of the proposed technique and to illustrate the variance in the accuracy of the functions of many encoding/classification parameters. The work represents a first preliminary step towards a new mobility prediction approach. We demonstrate that it is possible to achieve a very high level of prediction accuracy with low computational complexity, exploiting the strength of neural networks in image recognition.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of King Saud University - Computer and Information Sciencescs
dc.relation.urihttps://doi.org/10.1016/j.jksuci.2023.101561cs
dc.rights© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectconvolutional neural networkscs
dc.subjectdata-2-image conversioncs
dc.subjectmachine learningcs
dc.subjectmobility classificationcs
dc.subjectpattern predictioncs
dc.titleA novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encodingcs
dc.typearticlecs
dc.identifier.doi10.1016/j.jksuci.2023.101561
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume35cs
dc.description.issue6cs
dc.description.firstpageart. no. 101561cs
dc.identifier.wos001042923200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.