Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction
dc.contributor.author | Basterrech, Sebastián | |
dc.contributor.author | Rubino, Gerardo | |
dc.date.accessioned | 2024-03-14T09:06:20Z | |
dc.date.available | 2024-03-14T09:06:20Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Applied Soft Computing. 2023, vol. 144, art. no. 110463. | cs |
dc.identifier.issn | 1568-4946 | |
dc.identifier.issn | 1872-9681 | |
dc.identifier.uri | http://hdl.handle.net/10084/152339 | |
dc.description.abstract | From one side, Evolutionary Algorithms have enabled enormous progress over the last years in the optimization field. They have been applied to a variety of problems, including optimization of Neural Networks’ architectures. On the other side, the Echo State Network (ESN) model has become increasingly popular in time series prediction, for instance when modeling chaotic sequences. The network has numerous hidden neurons forming a recurrent topology, so-called reservoir, which is fixed during the learning process. Initial reservoir design has mostly been made by human experts; as a consequence, it is prone to errors and bias, and it is a time consuming task. In this paper, we introduce an automatic general neuroevolutionary framework for ESNs, on which we develop a computational tool for evolving reservoirs, called EVOlutionary Echo State Network (EvoESN). To increase efficiency, we represent the large matrix of reservoir weights in the Fourier space, where we perform the evolutionary search strategy. This frequency space has major advantages compared with the original weight space. After updating the Fourier coefficients, we go back to the weight space and perform a conventional training phase for full setting the reservoir architecture. We analyze the evolutionary search employing genetic algorithms and particle swarm optimization, obtaining promising results with the latter over three well-known chaotic time series. The proposed framework leads fast to very good results compared with modern ESN models. Hence, this contribution positions an important family of recurrent systems in the promising neuroevolutionary domain. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Applied Soft Computing | cs |
dc.relation.uri | https://doi.org/10.1016/j.asoc.2023.110463 | cs |
dc.rights | © 2023 Elsevier B.V. All rights reserved. | cs |
dc.subject | neuroevolution | cs |
dc.subject | Echo State Networks | cs |
dc.subject | Evolutionary Algorithms | cs |
dc.subject | Reservoir Computing | cs |
dc.subject | Fourier transform | cs |
dc.subject | swarm optimization | cs |
dc.title | Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.asoc.2023.110463 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 144 | cs |
dc.description.firstpage | art. no. 110463 | cs |
dc.identifier.wos | 001054625900001 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.