Zobrazit minimální záznam

dc.contributor.authorZelinka, Ivan
dc.contributor.authorKojecký, Lumír
dc.contributor.authorLampart, Marek
dc.contributor.authorNowaková, Jana
dc.contributor.authorPlucar, Jan
dc.date.accessioned2024-03-15T07:19:29Z
dc.date.available2024-03-15T07:19:29Z
dc.date.issued2023
dc.identifier.citationApplied Soft Computing. 2023, vol. 142, art. no. 110350.cs
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.urihttp://hdl.handle.net/10084/152350
dc.description.abstractIn the present paper, we demonstrate the possibilities of designing quantum computing circuits using a specific swarm intelligence algorithm — iSOMA in the form of three experiments. All simulations are based on a simple sample of a quantum computing circuit from the Qiskit environment, which was used as a comparison circuit with the results of the three experiments already mentioned. In the first experiment, we try to find an arbitrary functional solution using iSOMA with minimal constraints on this circuit’s design. It can be said that in this experiment, iSOMA showed the highest degree of “creativity”. In the second experiment, we focused on whether iSOMA can be used to find a circuit identical to the one designed by a human or equivalent with the positions of the measurement gates fixed. In the last experiment, we highlight iSOMA’s ability to avoid unnecessary qubit usage by adding redundant qubits to a possible circuit and fixing the measurement gates to the last two qubits in the scheme. In all three experiments, we see that iSOMA can find efficient functional and often astonishing solutions — the proposed method applied to a classical circuit founded a new one preserving required properties while saving one ancilla (redundant, useless, non-used)1 qubit. All computations are implemented in the IBM Qiskit2 environment. Although these are relatively simple experiments, the results show that evolutionary algorithms can successfully design more complex quantum circuits.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Soft Computingcs
dc.relation.urihttps://doi.org/10.1016/j.asoc.2023.110350cs
dc.rights© 2023 The Authors. Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectevolutionary algorithmscs
dc.subjectswarm intelligencecs
dc.subjectquantum computationcs
dc.subjectquantum circuitcs
dc.subjectquantum computation synthesiscs
dc.titleiSOMA swarm intelligence algorithm in synthesis of quantum computing circuitscs
dc.typearticlecs
dc.identifier.doi10.1016/j.asoc.2023.110350
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume142cs
dc.description.firstpageart. no. 110350cs
dc.identifier.wos001053207300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Published by Elsevier B.V.