Zobrazit minimální záznam

dc.contributor.authorNguyen, Tan N.
dc.contributor.authorMinh, Bui Vu
dc.contributor.authorTran, Dinh-Hieu
dc.contributor.authorLe, Thanh-Lanh
dc.contributor.authorLe, Anh-Tu
dc.contributor.authorNguyen, Quang-Sang
dc.contributor.authorLee, Byung Moo
dc.date.accessioned2024-03-19T10:56:23Z
dc.date.available2024-03-19T10:56:23Z
dc.date.issued2023
dc.identifier.citationSensors. 2023, vol. 23, issue 17, art. no. 7618.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/152373
dc.description.abstractThis paper investigates the security-reliability of simultaneous wireless information and power transfer (SWIPT)-assisted amplify-and-forward (AF) full-duplex (FD) relay networks. In practice, an AF-FD relay harvests energy from the source (S) using the power-splitting (PS) protocol. We propose an analysis of the related reliability and security by deriving closed-form formulas for outage probability (OP) and intercept probability (IP). The next contribution of this research is an asymptotic analysis of OP and IP, which was generated to obtain more insight into important system parameters. We validate the analytical formulas and analyze the impact on the key system parameters using Monte Carlo simulations. Finally, we propose a deep learning network (DNN) with minimal computation complexity and great accuracy for OP and IP predictions. The effects of the system’s primary parameters on OP and IP are examined and described, along with the numerical data.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s23177618cs
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectphysical layer security (PLS)cs
dc.subjectself-energy recyclingcs
dc.subjectfull duplex (FD)cs
dc.subjectoutage probability (OP)cs
dc.subjectintercept probability (IP)cs
dc.subjectdeep learning network (DNN)cs
dc.titleSecurity–reliability analysis of AF full-duplex relay networks using self-energy recycling and deep neural networkscs
dc.typearticlecs
dc.identifier.doi10.3390/s23177618
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue17cs
dc.description.firstpageart. no. 7618cs
dc.identifier.wos001061144100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.