Zobrazit minimální záznam

dc.contributor.authorJanča, Ondřej
dc.contributor.authorOchodková, Eliška
dc.contributor.authorKriegová, Eva
dc.contributor.authorHorák, Pavel
dc.contributor.authorSkácelová, Martina
dc.contributor.authorKudělka, Miloš
dc.date.accessioned2024-03-19T11:57:18Z
dc.date.available2024-03-19T11:57:18Z
dc.date.issued2023
dc.identifier.citationApplied Network Science. 2023, vol. 8, issue 1, art. no. 57.cs
dc.identifier.issn2364-8228
dc.identifier.urihttp://hdl.handle.net/10084/152375
dc.description.abstractHospital databases provide complex data on individual patients, which can be ana lysed to discover patterns and relationships. This can provide insight into medicine that cannot be gained through focused studies using traditional statistical methods. A multivariate analysis of real-world medical data faces multiple difculties, though. In this work, we present a methodology for medical data analysis. This methodology includes data preprocessing, feature analysis, patient similarity network construction and community detection. In the theoretical sections, we summarise publications and concepts related to the problem of medical data, our methodology, and rheu matoid arthritis (RA), including the concepts of disease activity and activity measures. The methodology is demonstrated on a dataset of RA patients in the experimental sec tion. We describe the analysis process, hindrances encountered, and fnal results. Lastly, the potential of this methodology for future medicine is discussed.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesApplied Network Sciencecs
dc.relation.urihttps://doi.org/10.1007/s41109-023-00582-3cs
dc.rightsCopyright © 2023, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectpatient similarity networkcs
dc.subjectlocal representativenesscs
dc.subjectLRNetcs
dc.subjectrheumatoid arthritiscs
dc.subjectmedical datacs
dc.titleReal-world data in rheumatoid arthritis: patient similarity networks as a tool for clinical evaluation of disease activitycs
dc.typearticlecs
dc.identifier.doi10.1007/s41109-023-00582-3
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume8cs
dc.description.issue1cs
dc.description.firstpageart. no. 57cs
dc.identifier.wos001060048300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2023, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2023, The Author(s)