Deep learning methods to detect Alzheimer's disease from MRI: A systematic review
dc.contributor.author | Coelho, Mariana | |
dc.contributor.author | Černý, Martin | |
dc.contributor.author | Tavares, João Manuel R. S. | |
dc.date.accessioned | 2024-04-17T12:10:56Z | |
dc.date.available | 2024-04-17T12:10:56Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Expert Systems. 2023. | cs |
dc.identifier.issn | 0266-4720 | |
dc.identifier.issn | 1468-0394 | |
dc.identifier.uri | http://hdl.handle.net/10084/152517 | |
dc.description.abstract | Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative condi tion in the brain that affects memory, thinking, and behaviour. To overcome this problem, which according to the World Health Organization, is on the rise, creating strategies is essential to identify and predict the disease in its early stages before clin ical manifestation. In addition to cognitive and mental tests, neuroimaging is promis ing in this field, especially in assessing brain matter loss. Therefore, computer-aided diagnosis systems have been imposed as fundamental tools to help imaging techni cians as the diagnosis becomes less subjective and time-consuming. Thus, machine learning and deep learning (DL) techniques have come into play. In recent years, arti cles addressing the topic of Alzheimer's diagnosis through DL models are increasingly popular, with an exponential increase from year to year with increasingly higher accu racy values. However, the disease classification remains a challenging and pro gressing issue, not only in distinguishing between healthy controls and AD patients but mainly in differentiating intermediate stages such as mild cognitive impairment. Therefore, there is a need to develop more valuable and innovative techniques. This article presents an up-to-date systematic review of deep models to detect AD and its intermediate phase by evaluating magnetic resonance images. The DL models chosen by different authors are analysed, as well as their approaches regarding the used dataset and the data pre-processing and analysis techniques. | cs |
dc.language.iso | en | cs |
dc.publisher | Wiley | cs |
dc.relation.ispartofseries | Expert Systems | cs |
dc.relation.uri | https://doi.org/10.1111/exsy.13463 | cs |
dc.rights | © 2023 John Wiley & Sons Ltd. | cs |
dc.subject | Alzheimer's disease | cs |
dc.subject | CAD | cs |
dc.subject | deep learning | cs |
dc.subject | image analysis | cs |
dc.subject | magnetic resonance | cs |
dc.title | Deep learning methods to detect Alzheimer's disease from MRI: A systematic review | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1111/exsy.13463 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.identifier.wos | 001079709900001 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
Publikační činnost Děkanátu FEI / Publications of the Dean's Office of the Faculty of Electrical Engineering and Computer Science (400) [94]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Děkanátu FEI (400) v časopisech registrovaných ve Web of Science od roku 2023 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.