Zobrazit minimální záznam

dc.contributor.authorGhosh, Kalyan
dc.contributor.authorNg, Siowwoon
dc.contributor.authorLazar, Petr
dc.contributor.authorPadinjareveetil, Akshay Kumar K.
dc.contributor.authorMichalička, Jan
dc.contributor.authorPumera, Martin
dc.date.accessioned2024-04-22T06:21:13Z
dc.date.available2024-04-22T06:21:13Z
dc.date.issued2023
dc.identifier.citationAdvanced Functional Materials. 2023, vol. 34, issue 7.cs
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttp://hdl.handle.net/10084/152550
dc.description.abstractHeterostructures offer an exceptional possibility of combining individual 2D materials into a new material having altered properties compared to the parent materials. Germanane (GeH) is a 2D material with many favorable properties for energy storage and catalysis, however, its performance is hindered by its low electrical conductivity. To address the low electrochemical performance of GeH, a heterostructure of GeH and Ti3C2Tx is fabricated. The Ti3C2TX is a layered material belonging to the family of MXenes. The resulting heterostructure (GeMXene) at a defined mass ratio of GeH and Ti3C2Tx shows superior capacitive performance that surpasses that of both pristine materials. The effect of the size of cations and anions for intercalation into GeMXene in different aqueous salt solutions is studied. GeMXene allows only cation intercalation, which is evidenced by the gravimetric electrochemical quartz crystal microbalance (EQCM) technique. The capacitive performance of the GeMXene is compared in neutral, acidic, and alkaline electrolytes to determine the best electrochemical performance. This unleashes the potential use of GeMXene heterostructure in different electrolytes for supercapacitors and batteries. This work will pave the way to explore the heterostructures of other 2D materials such as novel MXenes and functionalized germanane for highly energy-storage efficient systems, and beyond.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesAdvanced Functional Materialscs
dc.relation.urihttps://doi.org/10.1002/adfm.202308793cs
dc.rights© 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectenergy storagecs
dc.subjectGeHcs
dc.subjectheterostructurescs
dc.subjectsupercapacitorcs
dc.subjectTi3C2Txcs
dc.subjectXenescs
dc.title2D Germanane-MXene Heterostructures for Cations Intercalation in Energy Storage Applicationscs
dc.typearticlecs
dc.identifier.doi10.1002/adfm.202308793
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume34cs
dc.description.issue7cs
dc.identifier.wos001094762600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH