Zobrazit minimální záznam

dc.contributor.authorKarátson, J.
dc.contributor.authorSysala, Stanislav
dc.contributor.authorBéreš, Michal
dc.date.accessioned2024-04-22T06:58:09Z
dc.date.available2024-04-22T06:58:09Z
dc.date.issued2023
dc.identifier.citationNumerical Linear Algebra with Applications. 2023.cs
dc.identifier.issn1070-5325
dc.identifier.issn1099-1506
dc.identifier.urihttp://hdl.handle.net/10084/152552
dc.description.abstractQuasi-Newton iterations are constructed for the finite element solution of small-strain nonlinear elasticity systems in 3D. The linearizations are based on spectral equivalence and hence considered as variable preconditioners arising from proper simplifications in the differential operator. Convergence is proved, providing bounds uniformly w.r.t. the FEM discretization. Convenient iterative solvers for linearized systems are also proposed. Numerical experiments in 3D confirm that the suggested quasi-Newton methods are competitive with Newton's method.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesNumerical Linear Algebra with Applicationscs
dc.relation.urihttps://doi.org/10.1002/nla.2537cs
dc.rights© 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectdeflated conjugate gradientcs
dc.subjectmesh independencecs
dc.subjectnonlinear elasticitycs
dc.subjectpreconditioningcs
dc.subjectQuasi-Newton methodscs
dc.titleQuasi-Newton variable preconditioning for nonlinear elasticity systems in 3Dcs
dc.typearticlecs
dc.identifier.doi10.1002/nla.2537
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume31cs
dc.description.issue3cs
dc.identifier.wos001090857400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.