Zobrazit minimální záznam

dc.contributor.authorLakhan, Abdullah
dc.contributor.authorMohammed, Mazin Abed
dc.contributor.authorAbdulkareem, Karrar Hameed
dc.contributor.authorJaber, Mustafa Musa
dc.contributor.authorKadry, Seifedine
dc.contributor.authorNedoma, Jan
dc.contributor.authorMartinek, Radek
dc.date.accessioned2024-04-22T12:15:17Z
dc.date.available2024-04-22T12:15:17Z
dc.date.issued2023
dc.identifier.citationHuman-Centric Computing and Information Sciences. 2023, vol. 13, art. no. 34.cs
dc.identifier.issn2192-1962
dc.identifier.urihttp://hdl.handle.net/10084/152556
dc.description.abstractThese days, the usage of sustainable transport applications has been growing in practice and has minimized global environmental issues as fuel vehicles did. Sustainable transport applications are distributed and can access data from anywhere in the network. However, due to sustainable electrical transport, much digital data is offloaded to the server to obtain the electricity stations. Therefore, many factors challenge sustainable vehicle applications, such as battery power consumption, service searching cost, execution delay, and execution accuracy. Thus, the existing decision support methods, such as TOPSIS multi-criteria decision method (MCDM), only support the fixed and accurate. Therefore, the fuzzy-based strategy will be more optimal for sustainable transport. The study devises the fuzzy-based energy-efficient decision support system (FBEES), which minimizes energy consumption, delay, and cost and increases scheduling accuracy for sustainable applications. These vehicles are connecting to the ubiquitous fog servers at different data centers in the system and offload their data for their processing. Simulation results show that FBEES minimizes energy by 30%, cost by 29%, delay by 31%, and improves accuracy compared to existing methods for sustainable transport applications.cs
dc.language.isoencs
dc.publisherKorea Information Processing Societycs
dc.relation.ispartofseriesHuman-Centric Computing and Information Sciencescs
dc.relation.urihttps://doi.org/10.22967/HCIS.2023.13.034cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/cs
dc.subjectsustainable transportcs
dc.subjectFBEEScs
dc.subjectvehiclescs
dc.subjectfuzzycs
dc.subjecttrain and testcs
dc.subjectelectrical chargescs
dc.titleFuzzy decision based energy-evolutionary system for sustainable transport in ubiquitous fog networkcs
dc.typearticlecs
dc.identifier.doi10.22967/HCIS.2023.13.034
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.firstpageart. no. 34cs
dc.identifier.wos001093214300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by-nc/3.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by-nc/3.0/