Zobrazit minimální záznam

dc.contributor.authorHalfar, Radek
dc.contributor.authorLawson, Brodie A. J.
dc.contributor.authordos Santos, Rodrigo Weber
dc.contributor.authorBurrage, Kevin
dc.date.accessioned2024-04-23T09:12:16Z
dc.date.available2024-04-23T09:12:16Z
dc.date.issued2023
dc.identifier.citationScientific Reports. 2023, vol. 13, issue 1, art. no. 11828.cs
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10084/152563
dc.description.abstractThis paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesScientific Reportscs
dc.relation.urihttps://doi.org/10.1038/s41598-023-38256-wcs
dc.rightsCopyright © 2023, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleRecurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissuecs
dc.typearticlecs
dc.identifier.doi10.1038/s41598-023-38256-w
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.issue1cs
dc.description.firstpageart. no. 11828cs
dc.identifier.wos001090401000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2023, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2023, The Author(s)