Zobrazit minimální záznam

dc.contributor.authorSnášel, Václav
dc.contributor.authorPerfilieva, Irina
dc.contributor.authorSingh, Meenu
dc.contributor.authorPant, Millie
dc.contributor.authorAlijani, Zahra
dc.contributor.authorKong, Lingping
dc.date.accessioned2024-04-24T08:33:58Z
dc.date.available2024-04-24T08:33:58Z
dc.date.issued2023
dc.identifier.citationApplied Soft Computing. 2023, vol. 149, art. no. 110956.cs
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.urihttp://hdl.handle.net/10084/152567
dc.description.abstractMultiple-criteria decision-making (MCDM) explicitly assesses several conflicting criteria for our daily lives in selecting products, vehicles, techniques, etc. Weighting on criteria is a critical step in MCDM as the invalid weight of criteria will lead to a wrong decision. The proposed method addresses some drawbacks of the entropy-based weighting method commonly used in MCDM. The proposed new weighting method considers multiple evaluation factors, including the performance of the decision-maker, the edge weight basis of a digraph, and dominance relationships in the data. By incorporating these factors, the proposed method overcomes the limitations of the entropy-based method and reduces the total computation required. We conducted experiments using sustainable transportation data and comprehensively analyzed the results. We also propose a fuzzy MCDM model incorporating the proposed weighting method and Dempster–Shafer theory. Our model aims to handle uncertainty and imprecision in decision-making. Finally, the correctness and effectiveness of the proposed model were tested on real-life applications. The results of these tests demonstrated that the proposed method provides a practical and effective approach to decision-making in various domains. Overall, the work introduces a new weighting method based on rankability in MCDM, addresses the limitations of the entropy-based method, and presents a fuzzy MCDM model for handling uncertainty. The experimental results suggest that the proposed approach is promising and offers valuable insights for decision-makers.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Soft Computingcs
dc.relation.urihttps://doi.org/10.1016/j.asoc.2023.110956cs
dc.rights© 2023 The Author(s). Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectMCDMcs
dc.subjectrankabilitycs
dc.subjectcriteria weightingcs
dc.subjectDempster–Shafer theorycs
dc.subjectinformation entropycs
dc.titleA rankability-based fuzzy decision making procedure for oil supplier selectioncs
dc.typearticlecs
dc.identifier.doi10.1016/j.asoc.2023.110956
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume149cs
dc.description.firstpageart. no. 110956cs
dc.identifier.wos001112876600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Author(s). Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Author(s). Published by Elsevier B.V.