Zobrazit minimální záznam

dc.contributor.authorAlaoui, Chakib
dc.contributor.authorKarmaoui, Mohamed
dc.contributor.authorBekka, Ahmed
dc.contributor.authorFilip Edelmannová, Miroslava
dc.contributor.authorGallardo, Juan Jesús
dc.contributor.authorNavas, Javier
dc.contributor.authorTouati, Wassila
dc.contributor.authorAllah, Imene Kadi
dc.contributor.authorFigueiredo, Bruno
dc.contributor.authorLabrincha, João António
dc.contributor.authorReli, Martin
dc.contributor.authorKočí, Kamila
dc.contributor.authorTobaldi, David Maria
dc.date.accessioned2024-05-06T11:50:43Z
dc.date.available2024-05-06T11:50:43Z
dc.date.issued2023
dc.identifier.citationJournal of Photochemistry and Photobiology A: Chemistry. 2023, vol. 445, art. no. 115020.cs
dc.identifier.issn1010-6030
dc.identifier.issn1873-2666
dc.identifier.urihttp://hdl.handle.net/10084/152601
dc.description.abstractClean energy, as well as air and water pollution, have emerged as significant challenges in today's society. Photocatalysis offers a potential solution to address these issues. It is an advanced oxidation process that utilises light to activate a semiconductor. Among photocatalytically active materials, titanium dioxide (TiO2) semiconductors are widely recognised. However, the performance of TiO2 is hindered by its wide band gap (∼3.2 eV) and high recombination rate of photo-generated electron-hole (e−−h+) pairs. To overcome these limitations, TiO2 in heterojunction with tungsten trioxide (WO3) has gained substantial attention for various photocatalytic applications. However, the literature reports contradictory behaviours due to variations in synthesis techniques and photocatalytic applications. In this study, we extensively investigated the photocatalytic properties of the TiO2/WO3 system for the removal of gaseous benzene, and H2 generation. To enhance the transport and lifetime of photo-generated excitons, graphene nanoplatelets were incorporated into the TiO2/WO3 system. We examined several parameters that influenced the photocatalytic activity of the synthesised materials, including the WO3 to TiO2 ratio, the presence of graphene, and the specific photocatalytic application. Interestingly, the position of the conduction bands played a crucial role in hydrogen generation. The TiO2/WO3 system exhibited a type-II heterojunction. While the hybridisation of TiO2 with WO3 was found to be detrimental to light-induced benzene removal and H2 generation, the modification of TiO2/WO3 with graphene nanoplatelets significantly improved the photocatalytic hydrogen generation. Notably, the specimen with 15 mol% WO3 and 1 wt% graphene demonstrated a five-fold increase in yield compared to its counterpart without graphene. These findings provide valuable insights for data-driven catalysis research.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Photochemistry and Photobiology A: Chemistrycs
dc.relation.urihttps://doi.org/10.1016/j.jphotochem.2023.115020cs
dc.rights© 2023 Published by Elsevier B.V.cs
dc.subjectTiO2/WO3 graphene hybridscs
dc.subjectH2 generationcs
dc.subjectbenzene removalcs
dc.subjectheterojunctioncs
dc.subjectS-schemecs
dc.titleTiO2/WO3/graphene for photocatalytic H2 generation and benzene removal: Widely employed still an ambiguous systemcs
dc.typearticlecs
dc.identifier.doi10.1016/j.jphotochem.2023.115020
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume445cs
dc.description.firstpageart. no. 115020cs
dc.identifier.wos001123745400001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam