dc.contributor.author | Zhou, Zhicheng | |
dc.contributor.author | Zhu, Juntong | |
dc.contributor.author | Li, Lutao | |
dc.contributor.author | Wang, Chen | |
dc.contributor.author | Zhang, Changwen | |
dc.contributor.author | Du, Xinyu | |
dc.contributor.author | Wang, Xiangyi | |
dc.contributor.author | Zhao, Guoxiang | |
dc.contributor.author | Wang, Ruonan | |
dc.contributor.author | Li, Jiating | |
dc.contributor.author | Lu, Zheng | |
dc.contributor.author | Zong, Yi | |
dc.contributor.author | Sun, Yinghui | |
dc.contributor.author | Rümmeli, Mark H. | |
dc.contributor.author | Zou, Guifu | |
dc.date.accessioned | 2024-07-15T06:28:57Z | |
dc.date.available | 2024-07-15T06:28:57Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | ACS Nano. 2024, vol. 18, issue 26, p. 17282-17292. | cs |
dc.identifier.issn | 1936-0851 | |
dc.identifier.issn | 1936-086X | |
dc.identifier.uri | http://hdl.handle.net/10084/154837 | |
dc.description.abstract | Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs3Sb2Br9 surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs3Sb2Br9 epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions. | cs |
dc.language.iso | en | cs |
dc.publisher | American Chemical Society | cs |
dc.relation.ispartofseries | ACS Nano | cs |
dc.relation.uri | https://doi.org/10.1021/acsnano.4c05293 | cs |
dc.rights | Copyright © 2024, American Chemical Society | cs |
dc.subject | van der Waals heterojunction | cs |
dc.subject | epitaxial growth | cs |
dc.subject | antimony halide perovskite | cs |
dc.subject | MoS2 | cs |
dc.subject | interlayer exciton | cs |
dc.title | Monomolecular membrane-assisted growth of antimony halide perovskite/MoS2 van der Waals epitaxial heterojunctions with long-lived interlayer exciton | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1021/acsnano.4c05293 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 18 | cs |
dc.description.issue | 26 | cs |
dc.description.lastpage | 17292 | cs |
dc.description.firstpage | 17282 | cs |
dc.identifier.wos | 001252883700001 | |