Zobrazit minimální záznam

dc.contributor.authorCrespi, G. P.
dc.contributor.authorRadi, Davide
dc.contributor.authorRocca, M.
dc.date.accessioned2024-07-19T08:59:43Z
dc.date.available2024-07-19T08:59:43Z
dc.date.issued2023
dc.identifier.citationComputational Economics. 2023.cs
dc.identifier.issn0927-7099
dc.identifier.issn1572-9974
dc.identifier.urihttp://hdl.handle.net/10084/154854
dc.description.abstractA robust game is a distribution-free model to handle ambiguity generated by a bounded set of possible realizations of the values of players' payoff functions. The players are worst-case optimizers and a solution, called robust-optimization equilibrium, is guaranteed by standard regularity conditions. The paper investigates the sensitivity to the level of uncertainty of this equilibrium focusing on robust games with no private information. Specifically, we prove that a robust-optimization equilibrium is an epsilon-Nash equilibrium of the nominal counterpart game, where epsilon measures the extra profit that a player would obtain by reducing his level of uncertainty. Moreover, given an epsilon-Nash equilibrium of a nominal game, we prove that it is always possible to introduce uncertainty such that the epsilon-Nash equilibrium is a robust-optimization equilibrium. These theoretical insights increase our understanding on how uncertainty impacts on the solutions of a robust game. Solutions that can be extremely sensitive to the level of uncertainty as the worst-case approach introduces non-linearity in the payoff functions. An example shows that a robust Cournot duopoly model can admit multiple and asymmetric robust-optimization equilibria despite only a symmetric Nash equilibrium exists for the nominal counterpart game.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesComputational Economicscs
dc.relation.urihttps://doi.org/10.1007/s10614-023-10486-0cs
dc.rightsCopyright © 2023, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectambiguity aversioncs
dc.subjectrobust optimizationcs
dc.subjectrobust gamescs
dc.titleInsights on the theory of robust gamescs
dc.typearticlecs
dc.identifier.doi10.1007/s10614-023-10486-0
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos001125996100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2023, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2023, The Author(s)