Zobrazit minimální záznam

dc.contributor.authorUrso, Mario
dc.contributor.authorUssia, Martina
dc.contributor.authorPeng, Xia
dc.contributor.authorOral, Cagatay M.
dc.contributor.authorPumera, Martin
dc.date.accessioned2024-09-11T07:25:28Z
dc.date.available2024-09-11T07:25:28Z
dc.date.issued2023
dc.identifier.citationNature Communications. 2023, vol. 14, issue 1, art. no. 6969.cs
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/10084/154894
dc.description.abstractThe development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO2/alpha-Fe2O3 microrobots, consisting of peanut-shaped alpha-Fe2O3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H2O2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots' active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics. Microrobot collectives promise new functions beyond individuals' capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesNature Communicationscs
dc.relation.urihttps://doi.org/10.1038/s41467-023-42674-9cs
dc.rightsCopyright © 2023, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleReconfigurable self-assembly of photocatalytic magnetic microrobots for water purificationcs
dc.typearticlecs
dc.identifier.doi10.1038/s41467-023-42674-9
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue1cs
dc.description.firstpageart. no. 6969cs
dc.identifier.wos001127178400010


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2023, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2023, The Author(s)