Zobrazit minimální záznam

dc.contributor.authorAtangana, Abdon
dc.contributor.authorAraz, Seda Igret
dc.date.accessioned2024-10-11T09:52:37Z
dc.date.available2024-10-11T09:52:37Z
dc.date.issued2024
dc.identifier.citationAIMS Mathematics. 2024, vol. 9, issue 3, p. 5763-5793.cs
dc.identifier.issn2473-6988
dc.identifier.urihttp://hdl.handle.net/10084/155144
dc.description.abstractThe existence and uniqueness of solutions to nonlinear ordinary differential equations with fractal-fractional derivatives, with Dirac-delta, exponential decay, power law, and generalized Mittag-Leffler kernels, have been the focus of this work. To do this, we used the Chaplygin approach, which entails creating two lower and upper sequences that converge to the solution of the equations under consideration. We have for each case provided the conditions under which these sequences are obtained and converge.cs
dc.language.isoencs
dc.publisherAIMS Presscs
dc.relation.ispartofseriesAIMS Mathematicscs
dc.relation.urihttps://doi.org/10.3934/math.2024280cs
dc.rights© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfractal-fractional differentiation and integrationcs
dc.subjectChaplygin’s methodcs
dc.subjectexistence and uniquenesscs
dc.titleExtension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equationscs
dc.typearticlecs
dc.identifier.doi10.3934/math.2024280
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue3cs
dc.description.lastpage5793cs
dc.description.firstpage5763cs
dc.identifier.wos001157506800005


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License.