Show simple item record

dc.contributor.authorDevi, C.
dc.contributor.authorMahalingam, Siva Kumar
dc.contributor.authorČep, Robert
dc.contributor.authorElangovan, Muniyandy
dc.date.accessioned2024-10-11T11:26:05Z
dc.date.available2024-10-11T11:26:05Z
dc.date.issued2024
dc.identifier.citationFrontiers in Mechanical Engineering. 2024, vol. 10, art. no. 1353544.cs
dc.identifier.issn2297-3079
dc.identifier.urihttp://hdl.handle.net/10084/155145
dc.description.abstractThe current research examines the effectiveness of cryogenically treated (CT) tungsten carbide cutting inserts on Custom450 stainless steel using multi-objective soft computing approaches. The Taguchi-based L27 orthogonal array was employed in the experiments. During milling operations, cutting force, surface roughness, and cutting temperature were measured at different spindle speeds (rpm), feed rates (mm/min), and constant depths of cut (mm). The surface roughness and chip morphology of the Custom 450 stainless steel machined by cryo-treated (CT) and untreated (UT) cutting tool inserts were compared across various responses to cutting temperature and force. This paper also carried out multi-objective optimization, employing algorithm techniques such as Grasshopper Optimization Algorithm (GHO), Grey Wolf Optimization(GWO), Harmony Search Algorithm(HAS), and Ant line Optimization (ALO). The Multi-objective Taguchi approach and TOPSIS were first used to optimize the machining process parameters (spindle speed, feed rate, and cryogenic treatment) with different performance characteristics. Second, to relate the machining process parameters with the performance characteristics (cutting force, cutting temperature, and surface roughness), a mathematical model was developed using response surface analysis. The created mathematical response model was validated using ANOVA. The results showed that in IGD values of GHO, GWO, HSA and ALO module had 2.5765, 2.4706, 2.3647 and 2.5882 respectively, ALO has the best performance indicator. A Friedman's test was also conducted, revealing higher resolution with the ALO method than with the HSA, GWO, and GHO methods. The results of the scanning test show that the ALO approach is workable.cs
dc.language.isoencs
dc.publisherFrontiers Media S.A.cs
dc.relation.ispartofseriesFrontiers in Mechanical Engineeringcs
dc.relation.urihttps://doi.org/10.3389/fmech.2024.1353544cs
dc.rights© 2024 Devi, Mahalingam, Cep and Elangovan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectend milling optimizationcs
dc.subjectcustom 450 stainless steelcs
dc.subjectant lion optimizationcs
dc.subjectmulti-objective TOPSIScs
dc.subjectparametric analysiscs
dc.titleOptimizing end milling parameters for custom 450 stainless steel using ant lion optimization and TOPSIS analysiscs
dc.typearticlecs
dc.identifier.doi10.3389/fmech.2024.1353544
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.firstpageart. no. 1353544cs
dc.identifier.wos001157172200001


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 Devi, Mahalingam, Cep and Elangovan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2024 Devi, Mahalingam, Cep and Elangovan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.