Zobrazit minimální záznam

dc.contributor.authorChu, Shu-Chuan
dc.contributor.authorDou, Zhi-Chao
dc.contributor.authorPan, Jeng-Shyang
dc.contributor.authorKong, Lingping
dc.contributor.authorSnášel Václav
dc.contributor.authorWatada, Junzo
dc.date.accessioned2024-10-14T08:33:44Z
dc.date.available2024-10-14T08:33:44Z
dc.date.issued2024
dc.identifier.citationArtificial Intelligence Review. 2024, vol. 57, issue 2, art. no. 23.cs
dc.identifier.issn0269-2821
dc.identifier.issn1573-7462
dc.identifier.urihttp://hdl.handle.net/10084/155146
dc.description.abstractDespite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network's performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) for optimizing super-resolution neural network architectures. The depthwise separable convolutions are introduced to reduce the number of parameters and minimize the impact on the performance of the super-resolution neural network. The proposed framework uses the RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is a multi-objective binary version of RUN, which balances multiple objectives when optimizing the neural network architecture. Experimental results on publicly available datasets indicate that the DWSR framework can reduce the number of parameters of the Residual Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of parameters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. Additionally, the framework can reduce the number of parameters of the HAT model by 5.38% while losing only 0.02 PSNR.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesArtificial Intelligence Reviewcs
dc.relation.urihttps://doi.org/10.1007/s10462-023-10648-4cs
dc.rights© The Author(s) 2024cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectneural architecture searchcs
dc.subjectsuper‑resolutioncs
dc.subjectswarm intelligencecs
dc.subjectmulti-objectivecs
dc.subjectrunge Kutta optimizercs
dc.titleDWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristicscs
dc.typearticlecs
dc.identifier.doi10.1007/s10462-023-10648-4
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume57cs
dc.description.issue2cs
dc.description.firstpageart. no. 23cs
dc.identifier.wos001161054000003


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© The Author(s) 2024
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © The Author(s) 2024