Zobrazit minimální záznam

dc.contributor.authorAnufriev, Mikhail
dc.contributor.authorDuffy, John
dc.contributor.authorPanchenko, Valentyn
dc.date.accessioned2024-10-15T08:29:39Z
dc.date.available2024-10-15T08:29:39Z
dc.date.issued2024
dc.identifier.citationJournal of Economic Behavior & Organization. 2024, vol. 218, p. 550-567.cs
dc.identifier.issn0167-2681
dc.identifier.issn1879-1751
dc.identifier.urihttp://hdl.handle.net/10084/155156
dc.description.abstractThe Individual Evolutionary Learning (IEL) algorithm was proposed as a portable learning model for games with large strategy spaces. In principle, IEL benchmark simulations could substitute or supplement expensive experiments with human subjects. We evaluate the ability of the IEL model to replicate experimental findings observed in repeated Keynesian Beauty Contest (KBC) games, which have a large strategy space. The IEL specification with standard parameter values is able to capture major dynamical features and differences between treatments in both one-dimensional (Nagel, 1995; Duffy and Nagel, 1997) and two-dimensional (Anufriev et al., 2022b) versions of KBC games. We compare IEL with some other simple learning models and find that it performs relatively better across multiple treatments. We also use IEL to predict behavior in repeated KBC games that have not yet been conducted experimentally.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Economic Behavior & Organizationcs
dc.relation.urihttps://doi.org/10.1016/j.jebo.2023.12.010cs
dc.rights© 2023 The Author(s). Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbeauty contest gamecs
dc.subjectlearningcs
dc.subjectevolutionary dynamicscs
dc.subjecttestbedcs
dc.subjectagent-based modelcs
dc.titleIndividual evolutionary learning in repeated beauty contest gamescs
dc.typearticlecs
dc.identifier.doi10.1016/j.jebo.2023.12.010
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume218cs
dc.description.lastpage567cs
dc.description.firstpage550cs
dc.identifier.wos001154029900001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Author(s). Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Author(s). Published by Elsevier B.V.