Zobrazit minimální záznam

dc.contributor.authorTuchin, Vladislav S.
dc.contributor.authorStepanidenko, Evgeniia A.
dc.contributor.authorVedernikova, Anna A.
dc.contributor.authorCherevkov, Sergei A.
dc.contributor.authorLi, Di
dc.contributor.authorLi, Lei
dc.contributor.authorDöring, Aaron
dc.contributor.authorOtyepka, Michal
dc.contributor.authorUshakova, Elena V.
dc.contributor.authorRogach, Andrey L.
dc.date.accessioned2024-10-15T08:46:11Z
dc.date.available2024-10-15T08:46:11Z
dc.date.issued2024
dc.identifier.citationSmall. 2024, vol. 20, issue 29.cs
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttp://hdl.handle.net/10084/155157
dc.description.abstractFunctional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials – carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesSmallcs
dc.relation.urihttps://doi.org/10.1002/smll.202310402cs
dc.rights© 2024 Wiley-VCH GmbHcs
dc.subjectcarbon dotscs
dc.subjectluminescencecs
dc.subjectmachine learningcs
dc.subjectmultiple linear regression modelcs
dc.subjectquantum yieldcs
dc.titleOptical properties prediction for red and near-infrared emitting carbon dots using machine learningcs
dc.typearticlecs
dc.identifier.doi10.1002/smll.202310402
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume20cs
dc.description.issue29cs
dc.identifier.wos001159925500001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam