Zobrazit minimální záznam

dc.contributor.authorAbbas, Naseem
dc.contributor.authorHussain, Akhtar
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorIbrahim, Tarek F.
dc.contributor.authorBirkea, F. M. Osman
dc.contributor.authorTahir, R. Abdelrahman
dc.date.accessioned2024-10-15T12:02:03Z
dc.date.available2024-10-15T12:02:03Z
dc.date.issued2024
dc.identifier.citationResults in Physics. 2024, vol. 56, art. no. 107302.cs
dc.identifier.issn2211-3797
dc.identifier.urihttp://hdl.handle.net/10084/155162
dc.description.abstractIn this current study, the potential-KdV equation has been altered by the addition of a new stochastic term. The transmission of nonlinear optical solitons and photons is described by the new stochastic potential-KdV (spKdV), which applies to electric circuits and multi -component plasmas. The Lie symmetry approach is presented to find out the symmetry generators. The matrices method is applied to develop the one-dimensional optimal system for the acquired Lie algebra. Based on each element of the one-dimensional optimal system, symmetry reductions are used to reduce the considered model into nonlinear ordinary differential equations (ODEs). One of these nonlinear ODEs is solved using a new novel generalized exponential rational function (GERF) approach. Graphical interpretation of a few of the acquired results is added by taking the suitable values of the constants. A novel general theorem which is known as Ibragimov's theorem enables the computation of conservation laws for any differential equation, without requiring the presence of Lagrangians. The idea of the self-adjoint equations for nonlinear equations serves as the foundation for this theorem. We present that the spKdV equation is nonlinearly self-adjoint. The conserved quantities are computed in line with each symmetry generator using Ibragimov's theorem.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesResults in Physicscs
dc.relation.urihttps://doi.org/10.1016/j.rinp.2023.107302cs
dc.rights© 2023 The Author(s). Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectstochastic potential-KdV equationcs
dc.subjectsymmetriescs
dc.subjectoptimal systemcs
dc.subjectsimilarity reductionscs
dc.subjectnonlinear self adjointcs
dc.subjectconservation lawscs
dc.titleA discussion on the Lie symmetry analysis, travelling wave solutions and conservation laws of new generalized stochastic potential-KdV equationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.rinp.2023.107302
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume56cs
dc.description.firstpageart. no. 107302cs
dc.identifier.wos001155875100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Author(s). Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Author(s). Published by Elsevier B.V.