Show simple item record

dc.contributor.authorWang, Kanghong
dc.contributor.authorWang, Chao
dc.contributor.authorTao, Yi
dc.contributor.authorTang, Zikun
dc.contributor.authorBenetti, Daniele
dc.contributor.authorVidal, François
dc.contributor.authorLiu, Yu
dc.contributor.authorRümmeli, Mark H.
dc.contributor.authorZhao, Haiguang
dc.contributor.authorRosei, Federico
dc.contributor.authorSun, Xuhui
dc.date.accessioned2024-10-15T14:14:53Z
dc.date.available2024-10-15T14:14:53Z
dc.date.issued2024
dc.identifier.citationAdvanced Functional Materials. 2024, vol. 34, issue 29.cs
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttp://hdl.handle.net/10084/155165
dc.description.abstractSolar-driven photoelectrochemical (PEC) reactions using colloidal quantum dots (QDs) as photoabsorbers have shown great potential for the production of clean fuels. However, the low H2 evolution rate, consistent with low values of photocurrent density, and their limited operational stability are still the main obstacles. To address these challenges, the heterostructure engineering of asymmetric capsule-shaped CdSe/CdxZn1-xSe QDs with broad absorption and efficient charge extraction compared to pure-shell QDs is reported. By engineering the shell composition from pure ZnSe shells into CdxZn1-xSe gradient shells, the electron transfer rate increased from 4.0 × 107 s−1 to 32.7 × 107 s−1. Moreover, the capsule-shaped architecture enables more efficient spatial carrier separation, yielding a saturated current density of average of 25.4 mA cm−2 under AM 1.5 G one sun illumination. This value is the highest ever observed for QDs-based devices and comparable to the best-known Si-based devices, perovskite-based devices, and metal oxide-based devices. Furthermore, PEC devices based on heterostructured QDs maintained 96% of the initial current density after 2 h and 82% after 10 h under continuous illumination, respectively. The results represent a breakthrough in hydrogen production using heterostructured asymmetric QDs.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesAdvanced Functional Materialscs
dc.relation.urihttps://doi.org/10.1002/adfm.202400580cs
dc.rights© 2024 Wiley-VCH GmbHcs
dc.subjectasymmetric quantum dotscs
dc.subjectgradient intermediate shellscs
dc.subjectmultiple exciton generationcs
dc.subjectphotoelectrochemical hydrogen productioncs
dc.titleHigh-performance photoelectrochemical hydrogen production using asymmetric quantum dotscs
dc.typearticlecs
dc.identifier.doi10.1002/adfm.202400580
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume34cs
dc.description.issue29cs
dc.identifier.wos001153408900001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record