Zobrazit minimální záznam

dc.contributor.authorPandya, Sundaram B.
dc.contributor.authorKalita, Kanak
dc.contributor.authorČep, Robert
dc.contributor.authorJangir, Pradeep
dc.contributor.authorChohan, Jasgurpreet Singh
dc.contributor.authorAbualigah, Laith
dc.date.accessioned2024-10-16T05:43:32Z
dc.date.available2024-10-16T05:43:32Z
dc.date.issued2024
dc.identifier.citationInternational Journal of Computational Intelligence Systems. 2024, vol. 17, issue 1, art. no. 33.cs
dc.identifier.issn1875-6891
dc.identifier.issn1875-6883
dc.identifier.urihttp://hdl.handle.net/10084/155167
dc.description.abstractThis study delves into the exploration of a novel Multi-objective Snow Ablation Optimizer (MOSAO) algorithm, tailored for addressing expansive Optimal Power Flow (OPF) challenges inherent in intricate power systems. These systems are often complemented with the integration of renewable energy modalities and the state-of-the-art Flexible AC Transmission Systems (FACTS). Building upon the foundational framework of a previously documented single-objective Snow Ablation Optimizer, we have evolved it into the MOSAO paradigm. This transformation is achieved by harnessing the potency of non dominated sorting coupled with the crowding distance strategy. The task of OPF magnifies in complexity when integrating renewable energy resources due to their inherent unpredictability and intermittent nature. As the modern power landscape evolves, FACTS devices are witnessing an increasing deployment to mitigate network demand and alleviate congestion issues. Within the ambit of this research, we've incorporated a stochastic wind energy source, working synergistically with an array of FACTS instruments. These encompass the static VAR compensator, thyristor-controlled series compensator and thyristor-driven phase shifter, all operating within the confines of an IEEE-30 bus framework. Strategic placement and cali bration of these FACTS devices aim to optimize the system by minimizing the cumulative fuel expenditure. The capricious essence of wind as an energy source is elegantly depicted through the lens of Weibull probability density graphs. To distil the optimal middle-ground solutions, we've employed a fuzzy decision-making matrix. When benchmarking our findings against those derived from other esteemed optimization algorithms, we observe a notable distinction. The results from the modified IEEE-30 bus system accentuate the superior convergence, diversity and distribution attributes of MOSAO, especially when scrutinizing power flows. The MOSAO source code is available at: https://github.com/kanak02/MOSAO.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesInternational Journal of Computational Intelligence Systemscs
dc.relation.urihttps://doi.org/10.1007/s44196-024-00415-wcs
dc.rightsCopyright © 2024, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectFACTS controllercs
dc.subjectmeta-heuristicscs
dc.subjectoptimizationcs
dc.subjectprobability density functioncs
dc.subjectstochasticcs
dc.titleMulti-objective snow ablation optimization algorithm: An elementary vision for security-constrained optimal power flow problem incorporating wind energy source with FACTS devicescs
dc.typearticlecs
dc.identifier.doi10.1007/s44196-024-00415-w
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume17cs
dc.description.issue1cs
dc.description.firstpageart. no. 33cs
dc.identifier.wos001162488400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2024, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2024, The Author(s)