Zobrazit minimální záznam

dc.contributor.authorVondrák, Jaroslav
dc.contributor.authorPenhaker, Marek
dc.contributor.authorKubíček, Jan
dc.date.accessioned2024-10-17T11:21:01Z
dc.date.available2024-10-17T11:21:01Z
dc.date.issued2024
dc.identifier.citationMeasurement. 2024, vol. 226, art. no. 114094.cs
dc.identifier.issn0263-2241
dc.identifier.issn1873-412X
dc.identifier.urihttp://hdl.handle.net/10084/155170
dc.description.abstractVectorcardiography is an alternative form of ECG for measuring electrical activity of the heart. It achieves higher sensitivity and provides the cardiologist additional information that can contribute to early diagnosis. This study is focused on proposal of a methodology for the processing of directly measured and transformed VCG records by using Kors regression transformation. A total 16 VCG features were extracted, while 12 features showed relevant information based on the statistical analysis and the method of maximum relevance minimum redundancy. These features served as input to the LDA and decision trees classifiers, while LDA achieved the most accurate results with accuracy 91.5%, specificity 76.3% and sensitivity 94.8% for directly measured VCG and accuracy 90.9%, specificity 76.3% and sensitivity 94.0% for transformed VCG. We conclude that this proposed methodology and the results obtained from it can be beneficial for the early diagnosis of myocardial infarction within the framework of automated detection.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMeasurementcs
dc.relation.urihttps://doi.org/10.1016/j.measurement.2023.114094cs
dc.rights© 2024 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectvectorcardiographycs
dc.subjectVCGcs
dc.subjectVCG featurescs
dc.subjectoctant numbercs
dc.subjectECGcs
dc.subjectmyocardial infarctioncs
dc.titleDetection of myocardial infarction using analysis of vectorcardiographic loopscs
dc.typearticlecs
dc.identifier.doi10.1016/j.measurement.2023.114094
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume226cs
dc.description.firstpageart. no. 114094cs
dc.identifier.wos001158678200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Published by Elsevier Ltd.