Zobrazit minimální záznam

dc.contributor.authorBrkić, Dejan
dc.date.accessioned2024-10-21T08:13:59Z
dc.date.available2024-10-21T08:13:59Z
dc.date.issued2024
dc.identifier.citationComputation. 2024, vol. 12, issue 2, art. no. 25.cs
dc.identifier.issn2079-3197
dc.identifier.urihttp://hdl.handle.net/10084/155180
dc.description.abstractClosed-loop pipe systems allow the possibility of the flow of gas from both directions across each route, ensuring supply continuity in the event of a failure at one point, but their main shortcoming is in the necessity to model them using iterative methods. Two iterative methods of determining the optimal pipe diameter in a gas distribution network with closed loops are described in this paper, offering the advantage of maintaining the gas velocity within specified technical limits, even during peak demand. They are based on the following: (1) a modified Hardy Cross method with the correction of the diameter in each iteration and (2) the node-loop method, which provides a new diameter directly in each iteration. The calculation of the optimal pipe diameter in such gas distribution networks relies on ensuring mass continuity at nodes, following the first Kirchhoff law, and concluding when the pressure drops in all the closed paths are algebraically balanced, adhering to the second Kirchhoff law for energy equilibrium. The presented optimisation is based on principles developed by Hardy Cross in the 1930s for the moment distribution analysis of statically indeterminate structures. The results are for steady-state conditions and for the highest possible estimated demand of gas, while the distributed gas is treated as a noncompressible fluid due to the relatively small drop in pressure in a typical network of pipes. There is no unique solution; instead, an infinite number of potential outcomes exist, alongside infinite combinations of pipe diameters for a given fixed flow pattern that can satisfy the first and second Kirchhoff laws in the given topology of the particular network at hand.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesComputationcs
dc.relation.urihttps://doi.org/10.3390/computation12020025cs
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectgas distributioncs
dc.subjectnetworks of conduitscs
dc.subjectHardy Cross methodcs
dc.subjectpipe diameterscs
dc.subjectoptimal designcs
dc.titleTwo iterative methods for sizing pipe diameters in gas distribution networks with loopscs
dc.typearticlecs
dc.identifier.doi10.3390/computation12020025
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue2cs
dc.description.firstpageart. no. 25cs
dc.identifier.wos001168319100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.