Zobrazit minimální záznam

dc.contributor.authorZan-Ul-Abadin, Qazi
dc.contributor.authorAhmad, Iftikhar
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorFaisal, Muhammad
dc.date.accessioned2024-10-22T07:41:59Z
dc.date.available2024-10-22T07:41:59Z
dc.date.issued2024
dc.identifier.citationNumerical Heat Transfer, Part B: Fundamentals. 2024.cs
dc.identifier.issn1040-7790
dc.identifier.issn1521-0626
dc.identifier.urihttp://hdl.handle.net/10084/155191
dc.description.abstractDue to the vast applications of nanofluids in hybrid cooling processes and their role in improving heat transfer in thermal systems, an attempt has been made to investigate the consequence of temperature-dependent thermal conductivity in the bidirectional flowing of Prandtl-Eyring (PE) hybrid nanomaterial. Zirconium dioxide (ZrO2) and copper (Cu) nanoparticles have been dispersed into an engine oil (EO) to create an effective hybrid nanomaterial. Viscous dissipation, magnetization, linear thermal radiation, and Ohmic heating mechanisms also influence the dynamics of the hybrid nanomaterial. The governing equations have been parameterized by using similarity transformations and the thermophysical properties of nanoparticles. Keller-Box simulations for the modeled problem have been conducted using an in-house code developed in MATHEMATICA. Convergence analysis has been presented and robust validation of the results has been performed to certify the accuracy of the numerical inspection. Post-processing of the results has been carried out by plotting temperature and velocity curves. Drag coefficient and Nusselt number have been formulated and analyzed in tabular forms. The rate of heat transfer is developed with the hybridization of ZrO2 and Cu nanoparticles into the base liquid, while drag forces are enhanced when utilizing PE material as the base liquid.cs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofseriesNumerical Heat Transfer, Part B: Fundamentalscs
dc.relation.urihttps://doi.org/10.1080/10407790.2024.2327474cs
dc.rightsRights managed by Taylor & Franciscs
dc.subjectbidirectional flowingcs
dc.subjectKeller-Box simulationscs
dc.subjectnanoparticles hybridizationcs
dc.subjectPrandtl-Eyring materialcs
dc.subjecttemperature-dependent conductivitycs
dc.titleNanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approachcs
dc.typearticlecs
dc.identifier.doi10.1080/10407790.2024.2327474
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos001185833200001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam