Remote sensing based forest cover classification using machine learning
dc.contributor.author | Aziz, Gouhar | |
dc.contributor.author | Minallah, Nasru | |
dc.contributor.author | Saeed, Aamir | |
dc.contributor.author | Frnda, Jaroslav | |
dc.contributor.author | Khan, Waleed | |
dc.date.accessioned | 2024-10-22T09:39:55Z | |
dc.date.available | 2024-10-22T09:39:55Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Scientific Reports. 2024, vol. 14, issue 1, art. no. 69. | cs |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/10084/155193 | |
dc.description.abstract | Pakistan falls significantly below the recommended forest coverage level of 20 to 30 percent of total area, with less than 6 percent of its land under forest cover. This deficiency is primarily attributed to illicit deforestation for wood and charcoal, coupled with a failure to embrace advanced techniques for forest estimation, monitoring, and supervision. Remote sensing techniques leveraging Sentinel-2 satellite images were employed. Both single-layer stacked images and temporal layer stacked images from various dates were utilized for forest classification. The application of an artificial neural network (ANN) supervised classification algorithm yielded notable results. Using a single-layer stacked image from Sentinel-2, an impressive 91.37% training overall accuracy and 0.865 kappa coefficient were achieved, along with 93.77% testing overall accuracy and a 0.902 kappa coefficient. Furthermore, the temporal layer stacked image approach demonstrated even better results. This method yielded 98.07% overall training accuracy, 97.75% overall testing accuracy, and kappa coefficients of 0.970 and 0.965, respectively. The random forest (RF) algorithm, when applied, achieved 99.12% overall training accuracy, 92.90% testing accuracy, and kappa coefficients of 0.986 and 0.882. Notably, with the temporal layer stacked image of the Sentinel-2 satellite, the RF algorithm reached exceptional performance with 99.79% training accuracy, 96.98% validation accuracy, and kappa coefficients of 0.996 and 0.954. In terms of forest cover estimation, the ANN algorithm identified 31.07% total forest coverage in the District Abbottabad region. In comparison, the RF algorithm recorded a slightly higher 31.17% of the total forested area. This research highlights the potential of advanced remote sensing techniques and machine learning algorithms in improving forest cover assessment and monitoring strategies. | cs |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartofseries | Scientific Reports | cs |
dc.relation.uri | https://doi.org/10.1038/s41598-023-50863-1 | cs |
dc.rights | Copyright © 2024, The Author(s) | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.title | Remote sensing based forest cover classification using machine learning | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1038/s41598-023-50863-1 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 14 | cs |
dc.description.issue | 1 | cs |
dc.description.firstpage | art. no. 69 | cs |
dc.identifier.wos | 001163663800148 |
Files in this item
This item appears in the following Collection(s)
-
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440) [369]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry telekomunikačních technologií (440) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.