Zobrazit minimální záznam

dc.contributor.authorRahman, Riaz Ur
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorMartinovič, Jan
dc.contributor.authorTunç, Osman
dc.date.accessioned2024-10-24T04:55:41Z
dc.date.available2024-10-24T04:55:41Z
dc.date.issued2024
dc.identifier.citationResults in Physics. 2024, vol. 57, art. no. 107385.cs
dc.identifier.issn2211-3797
dc.identifier.urihttp://hdl.handle.net/10084/155209
dc.description.abstractThe primary goal of this research is to explore the complex dynamics of wave propagation as described by the nonlinear fractional Gilson-Pickering equation (fGPE), a pivotal model in plasma physics and crystal lattice theory. Two alternative fractional derivatives, termed fi and M -truncated, are employed in the analysis. The new auxiliary equation method (NAEM) is applied to create diverse explicit solutions for surface waves in the given equation. This study includes a comparative evaluation of these solutions using different types of fractional derivatives. The derived solutions of the nonlinear fGPE, which include unique forms like dark, bright, and periodic solitary waves, are visually represented through 3D and 2D graphs. These visualizations highlight the shapes and behaviors of the solutions, indicating significant implications for industry and innovation. The proposed method's ability to provide analytical solutions demonstrates its effectiveness and reliability in analyzing nonlinear models across various scientific and technical domains. A comprehensive sensitivity analysis is conducted on the dynamical system of the f GPE. Additionally, modulation instability analysis is used to assess the model's stability, confirming its robustness. This analysis verifies the stability and accuracy of all derived solutions.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesResults in Physicscs
dc.relation.urihttps://doi.org/10.1016/j.rinp.2024.107385cs
dc.rights© 2024 Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectfractional Gilson–Pickering equationcs
dc.subjectexplicit solutionscs
dc.subjectfractional derivativescs
dc.subjectnew auxiliary equation methodcs
dc.subjectmodulation instabilitycs
dc.subjectsensitive analysiscs
dc.titleExploring analytical solutions and modulation instability for the nonlinear fractional Gilson-Pickering equationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.rinp.2024.107385
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume57cs
dc.description.firstpageart. no. 107385cs
dc.identifier.wos001179230400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 Published by Elsevier B.V.