Show simple item record

dc.contributor.authorShafiq, Anum
dc.contributor.authorSindhu, Tabassum Naz
dc.contributor.authorLone, Showkat Ahmad
dc.contributor.authorAbushal, Tahani A.
dc.contributor.authorHassan, Marwa K. H.
dc.date.accessioned2024-10-30T14:57:34Z
dc.date.available2024-10-30T14:57:34Z
dc.date.issued2024
dc.identifier.citationQuality and Reliability Engineering International. 2024, vol. 40, issue 4, p. 2078-2095.cs
dc.identifier.issn0748-8017
dc.identifier.issn1099-1638
dc.identifier.urihttp://hdl.handle.net/10084/155232
dc.description.abstractSoftware developers' goal is to develop reliable and superior software. Due to the fact that software errors frequently generate large societal or financial losses, software reliability is essential. Software reliability growth models are a widely used technique for software reliability assessment. This study examines various nonhomogeneous Poisson process models with the newly developed software reliability distribution and evaluates the unknown model parameters based on frequentist and Bayesian methods of estimation. Finally, we conduct evaluations on real datasets using a variety of evaluation criteria to compare the results of previous software reliability growth models and show how the proposed model may be applied under both approaches in a practical setting. According to this study, the innovative model's mean square error, R2, Adj-R2$Adj - {R}<^>2$, bias, predicted relative variation, Theil statistic, and mean error of prediction values show the lowest values under the Bayesian approach for data sets II to IV, and both approaches perform well for data set I. These implementation findings demonstrate the effectiveness of our specific approach based on our examination of failure data.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesQuality and Reliability Engineering Internationalcs
dc.relation.urihttps://doi.org/10.1002/qre.3512cs
dc.rights© 2024 John Wiley & Sons Ltd.cs
dc.subjectBayes estimationcs
dc.subjectmaximum likelihood estimationcs
dc.subjectmean value functioncs
dc.subjectNHPPcs
dc.subjectreliability efficiencycs
dc.subjectSRGMscs
dc.titleAn updated software reliability model using the shanker model and failure datacs
dc.typearticlecs
dc.identifier.doi10.1002/qre.3512
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume40cs
dc.description.issue4cs
dc.description.lastpage2095cs
dc.description.firstpage2078cs
dc.identifier.wos001173266000001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record