Zobrazit minimální záznam

dc.contributor.authorKalita, Kanak
dc.contributor.authorRamesh, Janjhyam Venkata Naga
dc.contributor.authorČepová, Lenka
dc.contributor.authorPandya, Sundaram B.
dc.contributor.authorJangir, Pradeep
dc.contributor.authorAbualigah, Laith
dc.date.accessioned2024-11-01T09:09:02Z
dc.date.available2024-11-01T09:09:02Z
dc.date.issued2024
dc.identifier.citationScientific Reports. 2024, vol. 14, issue 1.cs
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10084/155242
dc.description.abstractThe exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesScientific Reportscs
dc.relation.urihttps://doi.org/10.1038/s41598-024-52083-7cs
dc.rightsCopyright © 2024, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleMulti-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problemscs
dc.typearticlecs
dc.identifier.doi10.1038/s41598-024-52083-7
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue1cs
dc.identifier.wos001146299100047


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2024, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2024, The Author(s)