Zobrazit minimální záznam

dc.contributor.authorHolešová, Sylva
dc.contributor.authorČech Barabaszová, Karla
dc.contributor.authorHundáková, Marianna
dc.contributor.authorKratošová, Gabriela
dc.contributor.authorKaloč, Václav
dc.contributor.authorJoszko, Kamil
dc.contributor.authorGzik-Zroska, Bożena
dc.date.accessioned2024-11-06T12:42:36Z
dc.date.available2024-11-06T12:42:36Z
dc.date.issued2024
dc.identifier.citationPolymer Composites. 2024.cs
dc.identifier.issn0272-8397
dc.identifier.issn1548-0569
dc.identifier.urihttp://hdl.handle.net/10084/155261
dc.description.abstractEven though the biodegradability of polycaprolactone (PCL) and its nanocomposites is lower compared to other biodegradable polyesters, this property and good biocompatibility are used for development of materials for drug delivery with a long-term effect. We prepared novel PCL/clay nanocomposite films with antimicrobials chlorhexidine (CH) or octenidine (OCT) combined with ZnO anchored on vermiculite (VER). The intercalation of CH and OCT into the interlayer of VER/ZnOVER was confirmed by XRD, FTIR and SEM. The organically modified nanofillers compared to VER (−46.0 mV) or ZnOVER (−34.9 mV) showed a positive ζ-potential (+30.7 mV (VER_CH), +21.9 mV (VER_OCT), +24.6 mV (ZnOVER_CH)) indicating a relatively stable materials, except ZnOVER_OCT (+8.6 mV), which strongly agglomerated. Thin PCL/clay films were prepared by solvent casting method and the effect of used nanofillers on structural, thermal, mechanical and antimicrobial properties followed by degradation under hydrolytic conditions was studied. The results showed that presence of ZnO significantly decreases thermal and mechanical stability. The nanofillers with the higher hydrophilic character are responsible for the fastest degradation of PCL matrix. Films possessed high antimicrobial efficiency in long time intervals, hence these nanocomposites open new avenues for the possible application of such materials for the drug delivery with a long-term effect.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesPolymer Compositescs
dc.relation.urihttps://doi.org/10.1002/pc.28409cs
dc.rights© 2024 The Authors. Polymer Composites published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectantimicrobial activitycs
dc.subjectdegradationcs
dc.subjectpolycaprolactonecs
dc.titleComprehensive study of antimicrobial polycaprolactone/clay nanocomposite films: Preparation, characterization, properties and degradation in simulated body fluidcs
dc.typearticlecs
dc.identifier.doi10.1002/pc.28409
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos001196850400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Polymer Composites published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Polymer Composites published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.