Zobrazit minimální záznam

dc.contributor.authorGunjan, Abhishek
dc.contributor.authorBhattacharyya, Siddhartha
dc.date.accessioned2024-11-08T09:05:22Z
dc.date.available2024-11-08T09:05:22Z
dc.date.issued2024
dc.identifier.citationEvolutionary Intelligence. 2024, vol. 17, issue 4, p. 3061-3100.cs
dc.identifier.issn1864-5909
dc.identifier.issn1864-5917
dc.identifier.urihttp://hdl.handle.net/10084/155271
dc.description.abstractPortfolio optimization has long been a challenging proposition and a widely studied topic in finance and management. It involves selecting and allocating the right assets according to the desired objectives. It has been found that this nonlinear constraint problem cannot be effectively solved using a traditional approach. This paper covers and compares quantum-inspired versions of four popular evolutionary techniques with three benchmark datasets. Genetic algorithm, differential evolution, particle swarm optimization, ant colony optimization, and their quantum-inspired incarnations are implemented, and the results are compared. Experiments have been carried out with more than 10 years of stock price data from NASDAQ, BSE, and Dow Jones. This work proposes several enhancements to allocate funds efficiently, such as improved crossover techniques and dynamic and adaptive selection of parameters. Furthermore, it is observed that the quantum-inspired techniques outperform the classical counterparts.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesEvolutionary Intelligencecs
dc.relation.urihttps://doi.org/10.1007/s12065-024-00929-4cs
dc.rightsCopyright © 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.subjectportfolio optimizationcs
dc.subjectgenetic algorithms (GA)cs
dc.subjectparticle swarm optimization (PSO)cs
dc.subjectdifferential evolution (DE)cs
dc.subjectquantum-inspired meta-heuristiccs
dc.titleQuantum-inspired meta-heuristic approaches for a constrained portfolio optimization problemcs
dc.typearticlecs
dc.identifier.doi10.1007/s12065-024-00929-4
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume17cs
dc.description.issue4cs
dc.description.lastpage3100cs
dc.description.firstpage3061cs
dc.identifier.wos001190462000003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam