Zobrazit minimální záznam

dc.contributor.authorJiang, Xin
dc.contributor.authorLiu, Hongbo
dc.contributor.authorYang, Liping
dc.contributor.authorZhang, Bo
dc.contributor.authorWard, Tomas E.
dc.contributor.authorSnášel, Václav
dc.date.accessioned2024-11-14T12:19:00Z
dc.date.available2024-11-14T12:19:00Z
dc.date.issued2024
dc.identifier.citationComputing. 2024, vol. 106, issue 6, p. 1963-1986.cs
dc.identifier.issn0010-485X
dc.identifier.issn1436-5057
dc.identifier.urihttp://hdl.handle.net/10084/155296
dc.description.abstractLink prediction aims to capture the evolution of network structure, especially in real social networks, which is conducive to friend recommendations, human contact trajectory simulation, and more. However, the challenge of the stochastic social behaviors and the unstable space-time distribution in such networks often leads to unexplainable and inaccurate link predictions. Therefore, taking inspiration from the success of imitation learning in simulating human driver behavior, we propose a dynamic network link prediction method based on inverse reinforcement learning (DN-IRL) to unravel the motivations behind social behaviors in social networks. Specifically, the historical social behaviors (link sequences) and a next behavior (a single link) are regarded as the current environmental state and the action taken by the agent, respectively. Subsequently, the reward function, which is designed to maximize the cumulative expected reward from expert behaviors in the raw data, is optimized and utilized to learn the agent's social policy. Furthermore, our approach incorporates the neighborhood structure based node embedding and the self-attention modules, enabling sensitivity to network structure and traceability to predicted links. Experimental results on real-world dynamic social networks demonstrate that DN-IRL achieves more accurate and explainable of prediction compared to the baselines.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesComputingcs
dc.relation.urihttps://doi.org/10.1007/s00607-024-01279-wcs
dc.rightsCopyright © 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Naturecs
dc.subjectsocial networkcs
dc.subjectlink predictioncs
dc.subjectinverse reinforcement learningcs
dc.subjectnode embedding methodcs
dc.titleUnraveling human social behavior motivations via inverse reinforcement learning-based link predictioncs
dc.typearticlecs
dc.identifier.doi10.1007/s00607-024-01279-w
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume106cs
dc.description.issue6cs
dc.description.lastpage1986cs
dc.description.firstpage1963cs
dc.identifier.wos001194867800001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam