Zobrazit minimální záznam

dc.contributor.authorLi, Shuo
dc.contributor.authorKhan, Sami Ullah
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorAlQahtani, Salman A.
dc.contributor.authorAlamri, Atif M.
dc.date.accessioned2024-11-18T10:33:58Z
dc.date.available2024-11-18T10:33:58Z
dc.date.issued2024
dc.identifier.citationScientific Reports. 2024, vol. 14, issue 1, art. no. 6930.cs
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10084/155311
dc.description.abstractThe fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system's solutions, we investigate stochasticity's influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesScientific Reportscs
dc.relation.urihttps://doi.org/10.1038/s41598-024-56944-zcs
dc.rightsCopyright © 2024, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfractional stochastic delay differential equationscs
dc.subjectstability analysiscs
dc.subjectspectral methodcs
dc.subjectLegendre Gauss–Lobatto nodescs
dc.titleNumerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysiscs
dc.typearticlecs
dc.identifier.doi10.1038/s41598-024-56944-z
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue1cs
dc.description.firstpageart. no. 6930cs
dc.identifier.wos001190086900048


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2024, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2024, The Author(s)