Zobrazit minimální záznam

dc.contributor.authorPunyavathi, R.
dc.contributor.authorPandian, A.
dc.contributor.authorSingh, Arvind R.
dc.contributor.authorBajaj, Mohit
dc.contributor.authorTuka, Milkias Berhanu
dc.contributor.authorBlažek, Vojtěch
dc.date.accessioned2024-11-25T15:04:03Z
dc.date.available2024-11-25T15:04:03Z
dc.date.issued2024
dc.identifier.citationScientific Reports. 2024, vol. 14, issue 1, art. no. 5661.cs
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10084/155341
dc.description.abstractThis paper presents a cutting-edge Sustainable Power Management System for Light Electric Vehicles (LEVs) using a Hybrid Energy Storage Solution (HESS) integrated with Machine Learning (ML)-enhanced control. The system's central feature is its ability to harness renewable energy sources, such as Photovoltaic (PV) panels and supercapacitors, which overcome traditional battery-dependent constraints. The proposed control algorithm orchestrates power sharing among the battery, supercapacitor, and PV sources, optimizing the utilization of available renewable energy and ensuring stringent voltage regulation of the DC bus. Notably, the ML-based control ensures precise torque and speed regulation, resulting in significantly reduced torque ripple and transient response times. In practical terms, the system maintains the DC bus voltage within a mere 2.7% deviation from the nominal value under various operating conditions, a substantial improvement over existing systems. Furthermore, the supercapacitor excels at managing rapid variations in load power, while the battery adjusts smoothly to meet the demands. Simulation results confirm the system's robust performance. The HESS effectively maintains voltage stability, even under the most challenging conditions. Additionally, its torque response is exceptionally robust, with negligible steady-state torque ripple and fast transient response times. The system also handles speed reversal commands efficiently, a vital feature for real-world applications. By showcasing these capabilities, the paper lays the groundwork for a more sustainable and efficient future for LEVs, suggesting pathways for scalable and advanced electric mobility solutions.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesScientific Reportscs
dc.relation.urihttps://doi.org/10.1038/s41598-024-55988-5cs
dc.rightsCopyright © 2024, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectsolar electric vehiclecs
dc.subjectsustainable power managementcs
dc.subjectlight electric vehiclescs
dc.subjecthybrid energy storage solutioncs
dc.subjectsupercapacitorscs
dc.subjectPV-battery interfacecs
dc.subjectSRM EV drivecs
dc.subjectmachine learningcs
dc.titleSustainable power management in light electric vehicles with hybrid energy storage and machine learning controlcs
dc.typearticlecs
dc.identifier.doi10.1038/s41598-024-55988-5
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue1cs
dc.description.firstpageart. no. 5661cs
dc.identifier.wos001185083700073


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2024, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2024, The Author(s)