Zobrazit minimální záznam

dc.contributor.authorKhan, Sami Ullah
dc.contributor.authorUllah, Saif
dc.contributor.authorLi, Shuo
dc.contributor.authorMostafa, Almetwally M.
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorAlQahtani, Nouf F.
dc.contributor.authorTeklu, Shewafera Wondimagegnhu
dc.date.accessioned2024-11-25T15:57:15Z
dc.date.available2024-11-25T15:57:15Z
dc.date.issued2024
dc.identifier.citationScientific Reports. 2024, vol. 14, issue 1, art. no. 7961.cs
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10084/155342
dc.description.abstractThe economic impact of Human Immunodeficiency Virus (HIV) goes beyond individual levels and it has a significant influence on communities and nations worldwide. Studying the transmission patterns in HIV dynamics is crucial for understanding the tracking behavior and informing policymakers about the possible control of this viral infection. Various approaches have been adopted to explore how the virus interacts with the immune system. Models involving differential equations with delays have become prevalent across various scientific and technical domains over the past few decades. In this study, we present a novel mathematical model comprising a system of delay differential equations to describe the dynamics of intramural HIV infection. The model characterizes three distinct cell sub-populations and the HIV virus. By incorporating time delay between the viral entry into target cells and the subsequent production of new virions, our model provides a comprehensive understanding of the infection process. Our study focuses on investigating the stability of two crucial equilibrium states the infection-free and endemic equilibriums. To analyze the infection-free equilibrium, we utilize the LaSalle invariance principle. Further, we prove that if reproduction is less than unity, the disease free equilibrium is locally and globally asymptotically stable. To ensure numerical accuracy and preservation of essential properties from the continuous mathematical model, we use a spectral scheme having a higher-order accuracy. This scheme effectively captures the underlying dynamics and enables efficient numerical simulations.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesScientific Reportscs
dc.relation.urihttps://doi.org/10.1038/s41598-024-57073-3cs
dc.rightsCopyright © 2024, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectHIV infectioncs
dc.subjectmathematical delay modelcs
dc.subjectstochastic effectcs
dc.subjectstability analysiscs
dc.subjectspectral methodcs
dc.subjectLegendre-Gauss-Lobatto pointscs
dc.titleA novel simulation-based analysis of a stochastic HIV model with the time delay using high order spectral collocation techniquecs
dc.typearticlecs
dc.identifier.doi10.1038/s41598-024-57073-3
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue1cs
dc.description.firstpageart. no. 7961cs
dc.identifier.wos001197575500012


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2024, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2024, The Author(s)