Zobrazit minimální záznam

dc.contributor.authorKhan, Tahir
dc.contributor.authorRihan, Fathalla A.
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorAltanji, Mohamed
dc.contributor.authorZaagan, Abdullah A.
dc.contributor.authorAhmad, Hijaz
dc.date.accessioned2024-11-27T09:10:52Z
dc.date.available2024-11-27T09:10:52Z
dc.date.issued2024
dc.identifier.citationAIMS Mathematics. 2024, vol. 9, issue 5, p. 12433-12457.cs
dc.identifier.issn2473-6988
dc.identifier.urihttp://hdl.handle.net/10084/155358
dc.description.abstractStochastic differential equation models are important and provide more valuable outputs to examine the dynamics of SARS-CoV-2 virus transmission than traditional models. SARS-CoV-2 virus transmission is a contagious respiratory disease that produces asymptomatically and symptomatically infected individuals who are susceptible to multiple infections. This work was purposed to introduce an epidemiological model to represent the temporal dynamics of SARS-CoV-2 virus transmission through the use of stochastic differential equations. First, we formulated the model and derived the well-posedness to show that the proposed epidemiological problem is biologically and mathematically feasible. We then calculated the stochastic reproductive parameters for the proposed stochastic epidemiological model and analyzed the model extinction and persistence. Using the stochastic reproductive parameters, we derived the condition for disease extinction and persistence. Applying these conditions, we have performed large-scale numerical simulations to visualize the asymptotic analysis of the model and show the effectiveness of the results derived.cs
dc.language.isoencs
dc.publisherAIMS Presscs
dc.relation.ispartofseriesAIMS Mathematicscs
dc.relation.urihttps://doi.org/10.3934/math.2024608cs
dc.rights© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectstochastic differential equationscs
dc.subjectexistence analysiscs
dc.subjectItô formulacs
dc.subjectLyapunov functioncs
dc.subjectextinctioncs
dc.subjectpersistencecs
dc.subjectMilstein’s higher order schemecs
dc.subjectnumerical simulationscs
dc.titleStochastic epidemic model for the dynamics of novel coronavirus transmissioncs
dc.typearticlecs
dc.identifier.doi10.3934/math.2024608
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue5cs
dc.description.lastpage12457cs
dc.description.firstpage12433cs
dc.identifier.wos001197002100005


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License.