Zobrazit minimální záznam

dc.contributor.authorPandya, Sundaram B.
dc.contributor.authorJangir, Pradeep
dc.contributor.authorMahdal, Miroslav
dc.contributor.authorKalita, Kanak
dc.contributor.authorChohan, Jasgurpreet Singh
dc.contributor.authorAbualigah, Laith
dc.date.accessioned2024-11-28T11:31:38Z
dc.date.available2024-11-28T11:31:38Z
dc.date.issued2024
dc.identifier.citationHeliyon. 2024, vol. 10, issue 4, art. no. e26369.cs
dc.identifier.issn2405-8440
dc.identifier.urihttp://hdl.handle.net/10084/155361
dc.description.abstractIn this study, we tackle the challenge of optimizing the design of a Brushless Direct Current (BLDC) motor. Utilizing an established analytical model, we introduced the Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) method, a biomimetic approach based on Pareto optimality, dominance, and external archiving. We initially tested MOGNDO on standard multi-objective benchmark functions, where it showed strong performance. When applied to the BLDC motor design with the objectives of either maximizing operational efficiency or minimizing motor mass, the MOGNDO algorithm consistently outperformed other techniques like Ant Lion Optimizer (ALO), Ion Motion Optimization (IMO), and Sine Cosine Algorithm (SCA). Specifically, MOGNDO yielded the most optimal values across efficiency and mass metrics, providing practical solutions for real-world BLDC motor design. The MOGNDO source code is available at: https://github.com/kanak02/MOGNDO.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesHeliyoncs
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2024.e26369cs
dc.rights© 2024 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectBLDC motorcs
dc.subjectelectromagneticscs
dc.subjectmetaheuristiccs
dc.subjectnon-dominated sorting generalized normal distribution optimizationcs
dc.titleOptimizing brushless direct current motor design: An application of the multi-objective generalized normal distribution optimizationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.heliyon.2024.e26369
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue4cs
dc.description.firstpageart. no. e26369cs
dc.identifier.wos001200461600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Published by Elsevier Ltd.