Zobrazit minimální záznam

dc.contributor.authorLe, Anh-Tu
dc.contributor.authorTran, Dinh-Hieu
dc.contributor.authorLe, Chi-Bao
dc.contributor.authorTin, Phu Tran
dc.contributor.authorNguyen, Tan N.
dc.contributor.authorDing, Zhiguo
dc.contributor.authorPoor, H. Vincent
dc.contributor.authorVozňák, Miroslav
dc.date.accessioned2024-11-29T12:31:13Z
dc.date.available2024-11-29T12:31:13Z
dc.date.issued2024
dc.identifier.citationIEEE Transactions on Mobile Computing. 2024, vol. 23, issue 6, p. 7270-7283.cs
dc.identifier.issn1536-1233
dc.identifier.issn1558-0660
dc.identifier.urihttp://hdl.handle.net/10084/155365
dc.description.abstractThis study investigates a two-way relaying non-orthogonal multiple access (TWR-NOMA) enabled Internet-of-Things (IoT) network, in which two NOMA users communicate via an IoT access point (IAP) relay using a decode-and-forward (DF) protocol. A power beacon (PB) is used to power the IAP to address the IAP's limited lifetime due to energy constraints. Since co-channel interference (CCI) is inevitable in IoT systems, this effect is also studied in the proposed system to improve practicality. Based on the proposed system model, the closed-form equations for the exact and asymptotic outage probability (OP) and ergodic data (ED) of the NOMA users' signals are first derived to describe the performance of TWR-NOMA systems. The system's diversity order and throughput are then evaluated according to the derived results. To further improve the system's performance, a low-complexity strategy 2D golden section search (GSS) is performed, subject to power allocation (PA) and time-switching (TS) factors, to optimize the outage performance. Finally, a deep learning design with minimal computing complexity and precision OP prediction is established for a real-time IoT network configuration. The numerical results are discussed and analyzed in terms of the effects of the CCI, the TS ratio, the PA factor, the fading parameter on the OP, system throughput, and ED.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Transactions on Mobile Computingcs
dc.relation.urihttp://doi.org/10.1109/TMC.2023.3333764cs
dc.rightsCopyright © 2024, IEEEcs
dc.subjectco-channel interferencecs
dc.subjectdeep neural networkcs
dc.subjectenergy harvestingcs
dc.subjectInternet of Thingscs
dc.subjectnon-orthogonal multiple accesscs
dc.subjectpower beaconcs
dc.subjecttwo-way relaycs
dc.subjectwireless power transfercs
dc.titlePower beacon and NOMA-assisted cooperative IoT networks with co-channel interference: Performance analysis and deep learning evaluationcs
dc.typearticlecs
dc.identifier.doi10.1109/TMC.2023.3333764
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue6cs
dc.description.lastpage7283cs
dc.description.firstpage7270cs
dc.identifier.wos001216462000025


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam