Zobrazit minimální záznam

dc.contributor.authorChu, Shu-Chuan
dc.contributor.authorLiang, LuLu
dc.contributor.authorPan, Jeng-Shyang
dc.contributor.authorKong, LingPing
dc.contributor.authorZhao, Jia
dc.date.accessioned2024-12-03T10:03:10Z
dc.date.available2024-12-03T10:03:10Z
dc.date.issued2024
dc.identifier.citationComplex & Intelligent Systems. 2024, vol. 10, issue 4, p. 5545-5568.cs
dc.identifier.issn2199-4536
dc.identifier.issn2198-6053
dc.identifier.urihttp://hdl.handle.net/10084/155377
dc.description.abstractDeploying static wireless sensor nodes is prone to network coverage gaps, resulting in poor network coverage. In this paper, an attempt is madetoimprovethenetworkcoveragebymovingthelocationsofthenodes.Asurrogate-assistedsinePhasmatodea population evolution algorithm (SASPPE) is used to evaluate the network coverage. A 50 × 50 hill simulation environment was tested for the number of nodes of 30 and 40 and radii of 3, 5 and 7, respectively. The results show that the SASPPE algorithm has the highest coverage, which can be up to 23.624% higher than the PPE algorithm, and up to 5.196% higher than the PPEalgorithm, ceteris paribus. The SASPPE algorithm mixes the GSAMwithLSAMs,whichbalancesthecomputational cost of the algorithm and the algorithm’s ability to find optimal results. The use of hierarchical clustering enhances the stable type of the LSAMs. In addition, LSAMs are easy to fall into local optimality when they are modeled with local data, and the use of sine Phasmatodea population evolution algorithm (Sine-PPE) for searching in LSAMs alleviates the time for the algorithm to fall into local optimality. On 30D, 50D, and 100D, the proposed algorithm was tested by 7 test functions. The results show that the algorithm has significant advantages on most functions.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesComplex & Intelligent Systemscs
dc.relation.urihttps://doi.org/10.1007/s40747-024-01460-wcs
dc.rightsCopyright © 2024, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPhasmatodea population evolutioncs
dc.subjectsurrogate-assistedcs
dc.subjectradial basis function networkscs
dc.subjectremovable nodescs
dc.titleSurrogate-assisted sine Phasmatodea population evolution algorithm applied to 3D coverage of mobile nodescs
dc.typearticlecs
dc.identifier.doi10.1007/s40747-024-01460-w
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue4cs
dc.description.lastpage5568cs
dc.description.firstpage5545cs
dc.identifier.wos001220435700001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2024, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2024, The Author(s)