A comprehensive review of parametric optimization of electrical discharge machining processes using multi-criteria decision-making techniques
dc.contributor.author | Pendokhare, Devendra | |
dc.contributor.author | Kalita, Kanak | |
dc.contributor.author | Chakraborty, Shankar | |
dc.contributor.author | Čep, Robert | |
dc.date.accessioned | 2024-12-03T11:28:59Z | |
dc.date.available | 2024-12-03T11:28:59Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Frontiers in Mechanical Engineering. 2024, vol. 10, art. no. 1404116. | cs |
dc.identifier.issn | 2297-3079 | |
dc.identifier.uri | http://hdl.handle.net/10084/155379 | |
dc.description.abstract | Optimization of electrical discharge machining (EDM) processes is a critical issue due to complex material removal mechanism, presence of multiple input parameters and responses (outputs) and interactions among them and varying interest of different stakeholders with respect to relative importance assigned to the considered responses. Multi-criteria decision making (MCDM) techniques have become potent tools in solving parametric optimization problems of the EDM processes. In this paper, more than 130 research articles from SCOPUS database published during 2013-22 are reviewed extracting information with respect to experimental design plans employed, materials machined, dielectrics used, process parameters and responses considered and MCDM tools applied along with their integration with other mathematical techniques. A detailed analysis of those reviewed articles reveals that the past researchers have mostly preferred Taguchi's L 9 orthogonal array as the experimental design plan; EDM oil as the dielectric fluid; medium and high carbon steels as the work materials; peak current and pulse-on time as the input parameters; material removal rate, tool wear rate and surface roughness as the responses; and grey relational analysis as the MCDM tool during conducting and optimizing EDM operations. This review paper would act as a data repository to the future researchers in understanding the stochastic behaviour of EDM processes and providing guidance in setting the tentative operating levels of varying input parameters along with achievable response values. The extracted dataset can be treated as an input to any of the machine learning algorithms for subsequent development of appropriate prediction models. This review also outlines potential future research avenues, emphasizing advancements in EDM technology and the integration of innovative multi-criteria decision-making tools. | cs |
dc.language.iso | en | cs |
dc.publisher | Frontiers Media S.A. | cs |
dc.relation.ispartofseries | Frontiers in Mechanical Engineering | cs |
dc.relation.uri | https://doi.org/10.3389/fmech.2024.1404116 | cs |
dc.rights | © 2024 Pendokhare, Kalita, Chakraborty and Čep.This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | EDM process | cs |
dc.subject | optimization | cs |
dc.subject | MCDM | cs |
dc.subject | process parameter | cs |
dc.subject | response | cs |
dc.title | A comprehensive review of parametric optimization of electrical discharge machining processes using multi-criteria decision-making techniques | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3389/fmech.2024.1404116 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 10 | cs |
dc.description.firstpage | art. no. 1404116 | cs |
dc.identifier.wos | 001229291100001 |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost Katedry obrábění, montáže a strojírenské metrologie / Publications of Department of Working and Assembly (346) [288]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry obrábění a montáže (346) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 Pendokhare, Kalita, Chakraborty and Čep.This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.