Zobrazit minimální záznam

dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorJhangeer, Adil
dc.contributor.authorDuraihem, Faisal Z.
dc.contributor.authorMartinovič, Jan
dc.date.accessioned2024-12-09T10:25:32Z
dc.date.available2024-12-09T10:25:32Z
dc.date.issued2024
dc.identifier.citationSymmetry. 2024, vol. 16, issue 5, art. no. 608.cs
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10084/155392
dc.description.abstractThe examination of new (3 + 1)-dimensional wave equations is undertaken in this study. Initially, the identification of the Lie symmetries of the model is carried out through the utilization of the Lie symmetry approach. The commutator and adjoint table of the symmetries are presented. Subsequently, the model under discussion is transformed into an ordinary differential equation using these symmetries. The construction of several bright, kink, and dark solitons for the suggested equation is then achieved through the utilization of the new auxiliary equation method. Subsequently, an analysis of the dynamical nature of the model is conducted, encompassing various angles such as bifurcation, chaos, and sensitivity. Bifurcation occurs at critical points within a dynamical system, accompanied by the application of an outward force, which unveils the emergence of chaotic phenomena. Two-dimensional plots, time plots, multistability, and Lyapunov exponents are presented to illustrate these chaotic behaviors. Furthermore, the sensitivity of the investigated model is executed utilizing the Runge-Kutta method. This analysis confirms that the stability of the solution is minimally affected by small changes in initial conditions. The attained outcomes show the effectiveness of the presented methods in evaluating solitons of multiple nonlinear models.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSymmetrycs
dc.relation.urihttps://doi.org/10.3390/sym16050608cs
dc.rights© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectextended (3 + 1)-dimensional wave equationcs
dc.subjectLie symmetry methodcs
dc.subjectsoliton solutionscs
dc.subjectbifurcationcs
dc.subjectchaoscs
dc.subjectmultistabilitycs
dc.subjectsensitivitycs
dc.titleAnalyzing dynamics: Lie symmetry approach to bifurcation, chaos, multistability, and solitons in extended (3 + 1)-dimensional wave equationcs
dc.typearticlecs
dc.identifier.doi10.3390/sym16050608
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume16cs
dc.description.issue5cs
dc.description.firstpageart. no. 608cs
dc.identifier.wos001231486000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.