Zobrazit minimální záznam

dc.contributor.authorTahir, Muhammad
dc.contributor.authorImran, Muhammad
dc.contributor.authorShah, Zaheer H.
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorRiaz, Saira
dc.contributor.authorNaseem, Shahzad
dc.date.accessioned2024-12-10T10:17:10Z
dc.date.available2024-12-10T10:17:10Z
dc.date.issued2024
dc.identifier.citationHeliyon. 2024, vol. 10, issue 8, art. no. e29553.cs
dc.identifier.issn2405-8440
dc.identifier.urihttp://hdl.handle.net/10084/155395
dc.description.abstractIn the recent development of energy storage devices, the scientific study has demonstrated a significant interest in the applications of the magnesium iron oxide (MgFe 2 O 4 ) nanoparticles. In this work, we present synthesized novel MgFe 2 O 4 nanoparticles at different molarities (0.1 - 0.5 M), via hydrothermal technique. An X-ray Diffractometer was used to study the phase analysis of the prepared samples at different molarities. A pure cubic phase of the MgFe 2 O 4 is observed at molar concentrations of 0.3 M and 0.4 M. However, the mixed phases consisting of (MgFe 2 O 4 + gamma -Fe 2 O 3 ) were also observed at 0.1 M, 0.2 M, and 0.5 M. The pure cubic MgFe 2 O 4 nanoparticles depict the large value of crystallite size, 19.5 nm, and the lowest dislocation density and strain. The vibrating Sample Magnetometer shows the ferromagnetic nature of the pure MgFe 2 O 4 with a high saturation magnetization. The value of saturation magnetization surged from 36.88 emu/g to 55.2 emu/g at 0.4 M concentration. The dielectric response of the materials as a function of applied frequency was studied thoroughly by using an Impedance Analyzer. The highest value of dielectric constant and low tangent loss was also reported at 0.4 M. Cole -Cole plots are the affirmation of the contribution of both grains and grain boundaries in the charge mechanism. These distinctive features make the synthesized material an excellent choice for future spintronics and energy storage devices.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesHeliyoncs
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2024.e29553cs
dc.rights© 2024 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjecthydrothermalcs
dc.subjectmagnetic propertiescs
dc.subjectferromagneticcs
dc.subjectnanoparticlescs
dc.titlePhase formation and dielectric properties of MgFe2O4 nanoparticles synthesized by hydrothermal techniquecs
dc.typearticlecs
dc.identifier.doi10.1016/j.heliyon.2024.e29553
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue8cs
dc.description.firstpageart. no. e29553cs
dc.identifier.wos001231198300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Published by Elsevier Ltd.