Zobrazit minimální záznam

dc.contributor.authorImran, Mudassar
dc.contributor.authorJhangeer, Adil
dc.contributor.authorAnsari, Ali R.
dc.contributor.authorRiaz, Muhammad Bilal
dc.contributor.authorGhazwani, Hassan Ali
dc.date.accessioned2024-12-11T07:51:42Z
dc.date.available2024-12-11T07:51:42Z
dc.date.issued2024
dc.identifier.citationAlexandria Engineering Journal. 2024, vol. 97, p. 283-293.cs
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.urihttp://hdl.handle.net/10084/155401
dc.description.abstractIn this paper, the fractional space-time nonlinear Chen -Lee -Liu equation has been considered using various methods. The investigation of the transition from periodic to quasi -periodic behavior has been conducted using a saddle -node bifurcation approach. The paper reports the conditions of multi -dimensional bifurcations of dynamical solutions. Additionally, a direct algebraic method has been used to calculate various 2D and 3D solitonic structures of the equation, and an analysis of their accuracy and effectiveness has been conducted. Furthermore, the Galilean transformation has been used to convert the equation into a planar dynamical system, which is further utilized to obtain bifurcations and chaotic structures. Chaotic structures of perturbed dynamical system are observed and detected through chaos detecting tools such as 2D -phase portrait, 3D -phase portrait, time series analysis, multistability and Lyapunov exponents over time. Further, sensitivity behavior for a range of initial conditions, both perturbed and unperturbed. The results suggest that the investigated equation exhibits a higher degree of multi-stability.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesAlexandria Engineering Journalcs
dc.relation.urihttps://doi.org/10.1016/j.aej.2024.04.003cs
dc.rights© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectspace-time dynamics of perturbed and unperturbed Chen-Lee-Liu equationcs
dc.subjectdynamical systemcs
dc.subjectbifurcations and chaotic structurescs
dc.subjectsensitivity analysiscs
dc.titleInvestigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structurescs
dc.typearticlecs
dc.identifier.doi10.1016/j.aej.2024.04.003
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume97cs
dc.description.lastpage293cs
dc.description.firstpage283cs
dc.identifier.wos001233464100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.