Show simple item record

dc.contributor.authorLampartová, Alžběta
dc.contributor.authorLampart, Marek
dc.date.accessioned2024-12-12T12:56:19Z
dc.date.available2024-12-12T12:56:19Z
dc.date.issued2024
dc.identifier.citationChaos, Solitons & Fractals. 2024, vol. 182, art. no. 114863.cs
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.urihttp://hdl.handle.net/10084/155409
dc.description.abstractDescribing the dynamical properties of explored systems, one finds the need to distinguish between various types of trajectories. The nature of trajectories is often split into regular and irregular, which will be shown in this paper as too crude. Hence, the main aim of this paper is to give a classification of trajectories reflecting persistence, regularity, chaos, intermittency, and transiency. To depict such phenomena, classical examples from discrete (the Rulkov map) and continuous (the Lorenz system) dynamical systems are applied. In these cases, the maximal Lyapunov exponent, the 0-1 test for chaos, the bifurcation diagram, and the Fourier analysis are applied, and these dynamics characteristics are confronted with trajectory types.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesChaos, Solitons & Fractalscs
dc.relation.urihttps://doi.org/10.1016/j.chaos.2024.114863cs
dc.rights© 2024 Elsevier Ltd. All rights reserved.cs
dc.subjectregularcs
dc.subjectchaoscs
dc.subjecttransientcs
dc.subject0-1 test for chaoscs
dc.subjectmaximal Lyapunov exponentcs
dc.subjectbifurcation diagramcs
dc.titleExploring diverse trajectory patterns in nonlinear dynamic systemscs
dc.typearticlecs
dc.identifier.doi10.1016/j.chaos.2024.114863
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume182cs
dc.description.firstpageart. no. 114863cs
dc.identifier.wos001231805900001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record