Zobrazit minimální záznam

dc.contributor.authorMayorga-Martinez, Carmen C.
dc.contributor.authorZelenka, Jaroslav
dc.contributor.authorPřibyl, Tomáš
dc.contributor.authorMarzo, Adaris Lopez
dc.contributor.authorŽivotský, Ondřej
dc.contributor.authorRuml, Tomáš
dc.contributor.authorPumera, Martin
dc.date.accessioned2025-01-07T09:27:27Z
dc.date.available2025-01-07T09:27:27Z
dc.date.issued2024
dc.identifier.citationChemical Engineering Journal. 2024, vol. 488, art. no. 150625.cs
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.urihttp://hdl.handle.net/10084/155450
dc.description.abstractMedical microrobots represent the cutting-edge of biomedical research, showcasing their potential as versatile tools. They exhibit promise in acting as carriers for cancer cell therapy, effectively delivering drugs, and as manipulators equipped for biosensing, offering mobility and adaptability. Despite these advancements, the intricate challenge of creating a microrobot that seamlessly integrates various physical and chemical functionalities persists. This includes the fusion of selective sensing, manipulation capabilities, carrier functionality, precise time-based actuators for motion control, and adaptive shaping. Addressing these complexities remains an ongoing endeavor. In this context, our work introduces a pioneering magnetic microrobot founded on CaCO3 microparticles (MPs) synthesized alongside polyethylenimine (CaCO3-PEI), forming the core body. This is combined with Fe3O4 nanoparticles (NPs) enveloped in glutaraldehyde (Fe3O4-Glu), constituting the propulsive engine. The synergy of these elements enables the microrobot to execute multimodal motions, orchestrating its movement with finesse. This dynamic capability follows a “deliver-and-return” pattern for precise targeting applications with real-world relevance. Furthermore, the Fe3O4-Glu/CaCO3-PEI microrobots demonstrated remarkable proficiency in the targeted identification, manipulation, and transportation of cancer cells through the strategic integration of specific antibodies onto their structure. Within the realm of selective cancer cell detection, these microrobots adeptly function as dynamic mobile immunosensors. The versatile utility of the Fe3O4-Glu/CaCO3-PEI microrobots extends to their role as carriers for drugs and imaging agents, facilitated by the mediation of extracellular pH modulation in cancer cells orchestrated by CaCO3. This innovative work introduces a novel “on-the-fly” concept, revolutionizing the landscape of robotics programmed with multifaceted chemical and physical intelligences.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesChemical Engineering Journalcs
dc.relation.urihttps://doi.org/10.1016/j.cej.2024.150625cs
dc.rights© 2024 Elsevier B.V. All rights reserved.cs
dc.subjectmobile sensing platformcs
dc.subjectphysical intelligencecs
dc.subjectmicrorobotscs
dc.subjectdrug carriercs
dc.titleProgramming self-assembling magnetic microrobots with multiple physical and chemical intelligencecs
dc.typearticlecs
dc.identifier.doi10.1016/j.cej.2024.150625
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume488cs
dc.description.firstpageart. no. 150625cs
dc.identifier.wos001226073900001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam