Zobrazit minimální záznam

dc.contributor.authorJunaid, Muhammad Sheraz
dc.contributor.authorAslam, Muhammad Nauman
dc.contributor.authorKhan, Muhammad Asim
dc.contributor.authorSaleem, Salman
dc.contributor.authorRiaz, Muhammad Bilal
dc.date.accessioned2025-01-09T09:42:02Z
dc.date.available2025-01-09T09:42:02Z
dc.date.issued2024
dc.identifier.citationAlexandria Engineering Journal. 2024, vol. 94, p. 193-211.cs
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.urihttp://hdl.handle.net/10084/155473
dc.description.abstractThe utilization of solar radiation by converting them into thermal energy is discussed in this paper. Nanoparticles improve the ability of heat transfer therefore, it is beneficial in the use of solar thermal systems and energy storage devices. The novel mixture of nanoparticles Graphene and Polythiophene in base fluid, which has high thermodynamic properties for the improvement of thermal effect with electromagnetic effect by using Maxwell fluid model is discussed. Polyvinyl alcohol water is taken as base fluid flowing through a moveable flat plat. The governing partial differential equations are transformed into ordinary differential equations. The semi-analytical technique, homotopy analysis method is used to obtain the solution of the ordinary differential equations. The velocity is enhanced with magnetic and electric field strength. The increase of the Prandtl number, Eckert number and chemical reaction parameter, exceeds the thermal effect which produces more entropy generation and heat enhancement. The results show that the hybrid nanofluid with this Novel mixture is highly thermodynamic with higher entropy and rapid thermal augmentation which can be used in energy production and energy storage devices. A novel intelligent numerical computing technique multi-layer perceptron with feed-forward back-propagation, an artificial neural networking method with the Levenberg-Marquard algorithm is used in this model. The data is gathered for the neural networking method training, validation, and testing. The efficiency of the model is obtained and mean square error is obtained by artificial neural networking.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesAlexandria Engineering Journalcs
dc.relation.urihttps://doi.org/10.1016/j.aej.2024.03.029cs
dc.rights© 2024 The Author(s). Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria Universitycs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectthermal radiationscs
dc.subjectMaxwell fluidcs
dc.subjectartificial neural networkingcs
dc.subjectEMHDcs
dc.subjecthybrid nanofluidcs
dc.titleThermal analysis of a viscoelastic Maxwell hybrid nanofluid with graphene and polythiophene nanoparticles: Insights from an artificial neural network modelcs
dc.typearticlecs
dc.identifier.doi10.1016/j.aej.2024.03.029
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume94cs
dc.description.lastpage211cs
dc.description.firstpage193cs
dc.identifier.wos001221346200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Author(s). Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Author(s). Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University