Show simple item record

dc.contributor.authorDostál, Michal
dc.contributor.authorSuchánek, Jan
dc.contributor.authorBitala, Petr
dc.contributor.authorKlečka, Vít
dc.contributor.authorNevrlý, Václav
dc.contributor.authorKlímková, Lenka
dc.contributor.authorKonečný, Petr
dc.contributor.authorVořechovská, Dita
dc.contributor.authorKubát, Pavel
dc.contributor.authorZelinger, Zdeněk
dc.date.accessioned2025-01-15T07:37:11Z
dc.date.available2025-01-15T07:37:11Z
dc.date.issued2024
dc.identifier.citationMeasurement. 2024, vol. 230, art. no. 114494.cs
dc.identifier.issn0263-2241
dc.identifier.issn1873-412X
dc.identifier.urihttp://hdl.handle.net/10084/155491
dc.description.abstractSignal denoising is a serious problem for in-situ laser diagnostics of gases dispersed in porous materials. An optical sensor system based on absorption spectroscopy of gases in a scattering environment was built using a 3D printed cell with reference samples of polystyrene foam. Selected A-band spectral lines of molecular oxygen were investigated using wavelength modulated spectroscopy with second harmonic detection. Quantitative information on the concentration of analyte dispersed in the porous medium was obtained at extremely low signal-to-noise ratio (SNR < 10). A spectral line shape fitting procedure based on the Gabor transform followed by a filtered inverse fast Fourier transform allowed to achieve a relatively high SNR with good linearity over a range of reduced oxygen concentrations in air. Finally, the applicability of the optical sensor system to monitor the diffusion of carbon dioxide into air dispersed in a Styrofoam sample and vice versa was successfully demonstrated.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMeasurementcs
dc.relation.urihttps://doi.org/10.1016/j.measurement.2024.114494cs
dc.rights© 2024 Elsevier Ltd. All rights reserved.cs
dc.subjectlight scatteringcs
dc.subjectdiode lasercs
dc.subjectabsorption spectroscopycs
dc.subjectgas diffusioncs
dc.subjectporous materialcs
dc.titleGas in scattering media absorption spectroscopy for time-resolved characterization of gas diffusion processes in porous materialscs
dc.typearticlecs
dc.identifier.doi10.1016/j.measurement.2024.114494
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume230cs
dc.description.firstpageart. no. 114494cs
dc.identifier.wos001218981600001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record