Zobrazit minimální záznam

dc.contributor.authorKalita, Kanak
dc.contributor.authorRamesh, Janjhyam Venkata Naga
dc.contributor.authorČep, Robert
dc.contributor.authorPandya, Sundaram B.
dc.contributor.authorJangir, Pradeep
dc.contributor.authorAbualigah, Laith
dc.date.accessioned2025-01-15T11:45:10Z
dc.date.available2025-01-15T11:45:10Z
dc.date.issued2024
dc.identifier.citationHeliyon. 2024, vol. 10, issue 5, art. no. e26665.cs
dc.identifier.issn2405-8440
dc.identifier.urihttp://hdl.handle.net/10084/155495
dc.description.abstractThis research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesHeliyoncs
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2024.e26665cs
dc.rights© 2024 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectmulti objective optimizationcs
dc.subjectengineering design optimizationcs
dc.subjectliver cancer algorithmcs
dc.subjectMOLCAcs
dc.subjectnon-dominated solutioncs
dc.subjectPareto solutioncs
dc.subjectPareto frontcs
dc.titleMulti-objective liver cancer algorithm: A novel algorithm for solving engineering design problemscs
dc.typearticlecs
dc.identifier.doi10.1016/j.heliyon.2024.e26665
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue5cs
dc.description.firstpageart. no. e26665cs
dc.identifier.wos001215756400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Published by Elsevier Ltd.